Transition-Edge Sensors vs. Superconducting Qubits for Particle Detection

Enectalí Figueroa-Feliciano Northwestern

Outline

- Introduction to direct detection of particle dark matter
- Dark matter search with SuperCDMS detectors
- Superconducting qubits for particle detection
- Upcoming plans for Cosmic Quantum (CosmiQ) group at **FNAL**

Dark Matter Detection Channels

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Dark Sector Particles

	Sterile V's		WIMPs					
n Gap								
eV	keV	MeV	GeV	TeV	PeV			
Matter	Mass							
10 ⁻¹¹	10 ⁻⁵	100	10 ¹	10 ¹	10 ¹			
n Recoil	Energy [eV]						
10 ⁻⁵	10 ⁻⁴	10 ⁻³	10 ⁻²	10 ⁻¹	100			
Between Particles [m]								
10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10^{-15}	10 ⁻¹⁸			
article Wavelength [m]								
	Ele Re	ectron	N R	uclear ecoils				

Differential Rate, Si, $\sigma = 1. \times 10^{-41} \text{ cm}^2$

4

 $7 \mathbf{N}$

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

 $\Delta E \sim 10 \text{ eV}$ e.g. Xe, Ar, He

Fig. adapted from 2203.08297

Fig. adapted from 2203.08297

 $\Delta E \sim 10 - 100 \text{ meV}$ e.g. GaAs, sapphire, Dirac materials, doped s/c, ...

Fig. adapted from 2203.08297

Fig. adapted from 2203.08297

ultimate reach: keV masses w/ single phonon excitations or electron recoils from low-gap materials

Dark Matter Particle Detection at keV and below

SuperCDMS Technology: Athermal Phonons

Transition-Edge Sensors and SQUIDS

- Refrigerator temperature has to be close to absolute zero
- A TES is a thin film made out of either Mo/Au (for X-ray detectors), W (for dark matter detectors) or Al/Mn (for neutrino detectors)
- Readout is done with Superconducting Quantum Interference Devices (SQUIDs)

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

SuperCDMS Technology: Athermal Phonons

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Anatomy of an Event

Charge signals are amplified with an electric field across the crystal

$$E_{ph} = E_{recoil} + E_{NTL} = E_{recoil} \left(1 + \frac{e \cdot V_{NTL}}{\epsilon} \right)$$

Total phonon energy

HVeV = High-Voltage, eV Scale

- 1x1x0.4 cm³ 0.93 g silicon crystal 2 equal-area TES sensors
- 2x2x0.4 cm³ 3.72 g silicon crystal 4 equal-area TES sensors

Detector technology advancement from a collaboration between Northwestern University and Fermilab

Single electron-hole pair sensitivity

Northwestern

Experimental Underground Site @Fermilab

Northwestern Experimental Underground Site @ Fermilab

- Located in the MINOS hall at Fermilab
 - 100 m (225 mwe) underground for cosmic radiation shielding
 - Easy access
 - Internal lead shield + movable external lead castle

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Northwestern Experimental Underground Site @ Fermilab

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Dilution Refrigerator

Northwestern IC Experimental Underground Site @Fermilab

Location for **Backing Array**

NEXUS is a multi-user underground fa

- 100 m of rock (300 meter waterequivalent) lowers muon rates to 7 evt/cm^2/day and hadronic showers to negligible levels.
- Lead inner and outer shields give a low gamma background environment of 100 evts/kg/day at 100 keV.
- 10 RF lines currently used for qubit and kinetic inductance detector work
- 8 DC SQUID channels used for neutrino and dark matter detector experiments.

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Mixing Chamber

InnerLead Shield

Qubit Testbed

Dark Matter Testbed

HVeV runs (R3 and R4) at NEXUS

- HVeV Run 3 at NEXUS (2020): 4 detectors backto-back for coincident measurement to test and reject FR-4 luminescence
- HVeV Run 4 at NEXUS (2022): Month-long data set with four detectors in new copper housing with no FR4, minimizing amount of insulator material, and improved IR shielding

World-leading sensitivity to dark matter!

e<

2.5

Rate /

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

But we want to go to lower thresholds!

Fig. adapted from 2203.08297

ultimate reach: keV masses w/ single phonon excitations or electron recoils from low-gap materials

Quantum Science Center

- Research Centers to advance QIS technologies in the US
- science (led by FNAL)

Thrust 3: Quantum Devices and Sensors for Discovery Science

Thrust 3 develops an understanding of fundamental sensing mechanisms in high-performance quantum devices and sensors. This understanding allows QSC researchers, working across the Center, to co-design new quantum devices and sensors with improved energy resolution, lower energy detection thresholds, better spatial and temporal resolution, lower noise, and lower error rates. Going beyond proof-of-principle demonstrations, the focus is on implementation of this hardware in specific, real-world applications.

Led by Fermilab's Aaron Chou

US Department of Energy funded five National Quantum Information (NQI) Science

 ORNL hosts the <u>Quantum Science Center</u> (QSC) which includes as one of its three thrusts the goal of ensuring some of this investment goes back into discovery

Superconducting Qubits

Could they be useful for particle dark matter detection?

- <u>Decoherence</u> loss of the qubit state due to relaxation or dephasing
 - Bad for QIS
 - Good for DM detection?
- $T_1 = \text{Relaxation Time} \text{timescale for}$ loss of the energy of the qubit state (ie, $1 \rightarrow 0$)
- $T_2^* = \underline{\text{Dephasing Time}} \text{timescale for}$ loss of the coherence of the qubit state

QUANTUM

Mahdi Naghiloo, (2019) [arXiv:1904.09291]

Background Radiation on Superconducting Qubits

Out

Vepsäläinen et al, Nature 584, 551 (2020) [arXiv:2001.09190]

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

- Measurements of decoherence relaxation rates $(1/T_1)$ in the presence of a ⁶⁴Cu source
- Clear correlation between T_1 and decay of ⁶⁴Cu source in two separate qubit sensors!
- Strong evidence that quasiparticle poisoning due to radiation breaking Cooper pairs can be a limiting factor in superconducting qubits for QIS

Background Radiation on Superconducting Qubits

Vepsäläinen et al, Nature 584, 551 (2020) [arXiv:2001.09190]

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

- Measurements of decoherence relaxation rates $(1/T_1)$ in the presence of a ⁶⁴Cu source
- Clear correlation between T_1 and decay of ⁶⁴Cu source in two separate qubit sensors!
- Strong evidence that quasiparticle poisoning due to radiation breaking Cooper pairs can be a limiting factor in superconducting qubits for QIS

Background Radiation on Superconducting Qubits

Vepsäläinen et al, Nature 584, 551 (2020) [arXiv:2001.09190]

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

y-rays are deeply penetrating y-ray e e e e e

- Measurements of decoherence relaxation rates $(1/T_1)$ in the presence of a ⁶⁴Cu source
- Clear correlation between T_1 and decay of ⁶⁴Cu source in two separate qubit sensors!
 - Strong evidence that quasiparticle poisoning due to radiation breaking Cooper pairs can be a limiting factor in superconducting qubits for QIS

Catastrophic Error Bursts from Cosmic Rays

Qubit Errors

Simultaneous

25

20

15 -

10

5

0

8.0

- This study found correlated errors in qubits across the device due to energy depositions in common substrate (information destroyed every 10s!)
- This alone isn't enough to say that qubits can be useful as meV-scale detectors, since we aren't only interested in minimum ionizing events (which have keV-MeV energy depositions)

McEwen et al, Nature 18, 107 (2022) [arXiv:2104.05219]

Catastrophic Error Bursts from Cosmic Rays

 <u>Hypothesis</u>: energy depositions in a substrate cause *correlated* decoherence across qubits due to quasiparticle poisoning that can be exploited as a means of particle (and specifically dark matter) detection.

Carrier Chip

Catastrophic Error Bursts from Cosmic Rays

- We have all the tools to work on this problem!
- Our dark matter detectors work by measuring phonons in silicon through TES detectors and Al superconducting collectors films
- We are bringing our knowledge of cryogenics, background reduction, particle detection, phonon and quasiparticle physics, and superconducting readout to Quantum Computing Problems

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

SuperCDMS Detector

Correlated charge offset jumps

Wilen et al, Nature 594, 369 (2021) [arXiv:2012.06029]

Chip w/ four weakly charge-sensitive transmon qubits demonstrates clear correlated offset charge jumps over long times

Correlated charge offset jumps @ NEXUS 💽

- See a clear correlation in charge jump rate with radiation environment.
- Currently analyzing this data to quantify the qubit chip.
- First results paper expected by the end of the year!

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Work by Kester Anyang, Dan Baxter, Daniel Bowring, Grace Bratrud, EFF, Sami Lewis, Hannah Magoon, and Jialin Yu

QUANTUM Correlated charge offset jumps @ NEXUS () E E N T E R

- See a clear correlation in charge jump rate with radiation environment.
- Currently analyzing this data to quantify the qubit chip.
- First results paper expected by the end of the year!

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Work by Kester Anyang, Dan Baxter, Daniel Bowring, Grace Bratrud, EFF, Sami Lewis, Hannah Magoon, and Jialin Yu

Study Comparison

	Year	# of Qubits	Shielding?	Source?	Result/Goal
P1, Vepsäläinen et al	2020	2	Above-ground, no rad shield [for shown results]	64 Cu	Radiation \rightarrow More relaxation errors
P2, McEwen et al	2022	26	Above-ground, no rad shield	None	Radiation \rightarrow Errors correlated in space and time
P3, Wilen et al	2021	4	Above-ground, no rad shield	None	Radiation \rightarrow Correlated charge jump charge sensitive qubit
Our Work		4	Underground, rad shield [multiple configurations]	¹³³ Ba, ¹³⁷ Cs, Neutrons	Controlled radiation → Controlled correlated charge jump rate

engineer both energy-sensitive (detection) and energy-insensitive (computing) qubits.

<u>Objective</u>: obtain controlled responses to quasiparticle density in qubits, to

How does this impact QIS technology development?

SC Qubits for Quantum Computing

- Error/dark count rate
- Effect of ionizing radiation
 - Quasiparticle
 - poisoning
 - Phonon
 - transport

Phonon and charge noise suppression

> Mitigations to improve coherence times

Error correction

schemes

Proposing a novel, multiplexed quantum device for particle physics detection

Single-phonon detector ($E_{th} \approx 1 \text{ meV}$)

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

- A low-mass DM recoil will deposit order meV-keV of energy ω in the substrate at location *r*, producing phonons
 - These will break Cooper-pairs in aluminum which are measured in quasiparticle detectors (qubits)
 - The energy-resolving detectors (veto), which have much higher thresholds, should see no simultaneous hits, since the energy deposition is below detector threshold

From the perspective of experimental design, this is very similar to a (tiny) bubble chamber!

- A "run" consists of a series of exposures, at the end of each the system is assessed for whether there was a state change (bubble OR $|1\rangle \rightarrow |0\rangle$)
- The majority of background events will be higher energy (> eV) at scales we are very good at detecting
 - \rightarrow this means we can veto them!
- Similar to a bubble chamber, no primary energy information
 - \rightarrow but yes to position information!

McEwen et al, Nature 18, 107 (2022) [arXiv:2104.05219]

Single-phonon detector ($E_{th} \approx 1 \text{ meV}$)

7/8/2023

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Proposing a novel, multiplexed quantum device for particle physics detection

Single-phonon detector ($E_{th} \approx 1 \text{ meV}$)

7/8/2023

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Proposing a novel, multiplexed quantum device for particle physics detection

McEwen et al, Nature 18, 107 (2022) [arXiv:2104.05219]

What's the reach of energy-dependent decoherence?

Energy decoherence detection relies on long <u>T1</u> decoherence times.

- "Base" energy decoherence timescale due to all environmental dissipation
- Often limited by qubit architecture (not QPs)
- Need base T_1 large enough that QPs can induce observable changes in it

For "un-optimized" energy collection, state-of-the-art Al Rate equation from Wang, C., Gao, Y., Pop, I. et al. "Measurement and control of quasiparticle dynamics in a superconducting qubit." Nat Commun 5, 5836 transmons could hit O(10eV) threshold. (2014) (<u>link</u>)

Source on "state of the art": Kjaergaard et al., "Superconducting Qubits: Current State of Play," https://doi.org/10.48550/arXiv.1905.13641

QSC@FNAL: Developing Simulations Chain

To get a mature estimate of reach, we need to simulate how energy deposits propagate through a detector to impact T1 decoherence times.

Credit: Ryan Linehan

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Designing an Experiment – Zooming In

Current G4CMP campaign: map in-chip energy depositions to quasiparticle populations affecting qubits

Work by Israel Hernandez & Ryan Linehan

Designing an Experiment – Calibration Development

MEMS mirror used to steer laser beam

- No power dissipation while stationary
- Modified control lines to function at cryogenic temperatures (>10mK)
- Large deflection angles (< ±5°)
- **High deflection resolution (>0.001°) High broadband reflectance**

Work by Kelly Stifter & Hannah Magoon

Optical Cable (from laser into dilution fridge)

Designing an Experiment – Calibration Development

Anticipated Functionality <100µm spot size ~10µm position resolution O(100)Hz scanning speed O(µs) pulse width **O(10mK) operating temperature** Single wavelength within 0.6-6.9eV Up to 1"x1" scanning range

Work by Kelly Stifter & Hannah Magoon

Designing an Experiment – Test Facilities

FNAL group has progress on many fronts towards this goal!

In addition to NEXUS, we have two identical new facilities at FNAL!

- <u>LOUD</u> high-throughput surface facility to advance qubit-based technology necessary to develop DM & radiation detectors
- <u>QUIET</u> underground clean facility (next to NEXUS; 225 mwe) to operate characterized devices in low-background (target 100 dru) environment (x10³ reduction)

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

QUIET LOUD Run Coordinator: Ryan Linehan

Test Facilities – LOUD

New DR installed at FNAL

6-qubit array borrowed from McDermott group

(August 2022)

(October 2022)

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Magnetic shielding coupled to scanning unit and installed in DR

<u>Run 1</u>: First demonstration of live qubits

(November 2022)

(February 2023)

Test Facilities – QUIET

Quantum Underground Instrumentation Experimental Testbed This QSC facility, once complete, will house one of the only dedicated, low-background cryostats for superconducting qubit operations

- •Class 10,000 clean room
- •50 ft² antechamber for gowning and material cleaning
- •250 ft2 main room will contain a shielded Oxford dil. fridge w/ up to 16(48) NbTi(SS) RF lines
- Design of the QUIET radiation shield and muon veto is underway in parallel
- •Utility installation is now proceeding, including power, chilled water, fiber internet, and fire suppression systems

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Conclusions

- Work at NEXUS is bridging TES and qubit technologies
- We've taken world-leading DM data with our SuperCDMS HVeV Detectors
- radiation study on qubits
- matter:
- (qubit decoherence) in collaboration with QIS community
- QIS
- Develop calibration sources to mimic the scattering of sub-MeV DM
- Understand background contributions down to and below a few eV
- We're just starting the process of turning quantum sensors into DM detectors, making this an interesting time on the cusp of a lot of new, exciting science

We are performing the first comprehensive low-background/high background

• The CosmiQ group @ FNAL is focusing on applying quantum detectors for dark

Determine, quantitatively, the effects of radiation on detector performance

Understand how to maximize/minimize radiation sensitivity in qubits for DM/

Acknowledgments

QSC Local Group Members:

- FNAL: Aaron Chou, Daniel Bowring, Gustavo Cancelo, Lauren Hsu, Adam
- Novati, Grace Bratrud, Alejandro Rodriguez

QSC External Collaborators:

- UW Madison: Robert McDermott, Sohair Abdullah, Gabe Spahn
- SLAC: Noah Kurinsky, Taj Dyson
- Tufts: Hannah Magoon (co-op w/ FNAL)

Work supported by Daniel Bowring's ECA

Anderson, Daniel Baxter, Sami Lewis, Ryan Linehan, Kelly Stifter, Dylan Temples IIT: Rakshya Khatiwada (joint w/ FNAL), <u>Kester Anyang</u>, <u>Israel Hernandez</u>, <u>Jialin Yu</u> Northwestern University: Enectali Figueroa-Feliciano (joint w/ FNAL), Valentina

Postdocs/Students

Not pictured: **Aaron Chou (FNAL) Gustavo Cancelo (FNAL)** Adam Anderson (FNAL) Valentina Novati (NU) **Grace Bratrud (NU) Alejandro Rodriguez (NU)**

Postdocs Available!

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Backup Slides

Detector Backgrounds

What do backgrounds even look like below eV energies..?

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

Detector Backgrounds – The Phonon low-energy Excess

• Problem! All low-threshold phonon detectors have large, unmodeled, uncalibrated backgrounds

Electron equivalent energy deposition (keV)

- Summary of what we know:
- **Non-ionizing**: produces a phonon signal, 1. not charge
- **Power Law:** spectral shape follows a power 2. law out to high energies
 - **<u>Time-since-cooldown</u>**: background seems to decay with a long time constant since reaching mK temperatures

Adari et al, SciPost Phys. Proc. 9, 001 (2022) [arXiv:2202.05097]

Detector Backgrounds – The Phonon Excess

A Stress Induced Source of Phonon Bursts and Quasiparticle Poisoning

R. Anthony-Petersen,¹ A. Biekert,^{1,2} R. Bunker,³ C.L. Chang,^{4,5,6} Y.-Y. Chang,¹ L. Chaplinsky,⁷ E. Fascione,^{8,9} C.W. Fink,¹ M. Garcia-Sciveres,² R. Germond,^{8,9} W. Guo,^{10,11} S.A. Hertel,⁷ Z. Hong,¹² N.A. Kurinsky,¹³ X. Li,² J. Lin,^{1,2} M. Lisovenko,⁴ R. Mahapatra,¹⁴ A.J. Mayer,⁹ D.N. McKinsey,^{1,2} S. Mehrotra,¹ N. Mirabolfathi,¹⁴ B. Neblosky,¹⁵ W.A. Page,^{1,*} P.K. Patel,⁷ B. Penning,¹⁶ H.D. Pinckney,⁷ M. Platt,¹⁴ M. Pyle,¹ M. Reed,¹ R.K. Romani,^{1,*} H. Santana Queiroz,¹ B. Sadoulet,¹ B. Serfass,¹ R. Smith,^{1,2} P. Sorensen,² B. Suerfu,^{1,2} A. Suzuki,² R. Underwood,⁸ V. Velan,^{1,2} G. Wang,⁴ Y. Wang,^{1,2} S.L. Watkins,¹ M.R. Williams,¹⁶ V. Yefremenko,⁴ and J. Zhang⁴

arXiv:2208.02790

Detector Backgrounds – The Phonon Excess

Anthony-Petersen et al, (2022) [arXiv:2208.02790]

Detector Backgrounds – The Phonon Excess

Impact of ionizing radiation on superconducting qubit coherence

Antti P. Vepsäläinen , Amir H. Karamlou, John L. Orrell , Akshunna S. Dogra, Ben Loer, Francisca Vasconcelos, David K. Kim, Alexander J. Melville, Bethany M. Niedzielski, Jonilyn L. Yoder, Simon Gustavsson, Joseph A. Formaggio, Brent A. VanDevender & William D. Oliver

Nature 584, 551–556 (2020) Cite this article

A superconductor free of quasiparticles for seconds

E. T. Mannila , P. Samuelsson, S. Simbierowicz, J. T. Peltonen, V. Vesterinen, L. Grönberg, J. Hassel, V. F. Maisi & J. P. Pekola

Nature Physics 18, 145–148 (2022) Cite this article

7/8/2023

Enectali Figueroa-Feliciano \ Quantum SNOLAB Workshop \ Jan 2024

• For two studies of superconducting qubit decoherence, this could be a dominant source of quasiparticle poisoning over high-energy contributions!!!

Anthony-Petersen et al, (2022) [arXiv:2208.02790]

In the case of the qubit, we find that our stress-induced background would produce a reduced quasiparticle density of $x_{qp} \approx 5.0 \times 10^{-8}$, while high-energy backgrounds should induce $x_{qp} \approx 1.5 \times 10^{-8}$. The latter is in general agreement with the lower bound of $x_{qp} \geq 7 \times 10^{-9}$ estimated in Ref. [11] for high-energy backgrounds. For the system in Ref. [15], we find that our stress events induce $x_{qp} \approx 2.8 \times 10^{-11}$, while high-energy backgrounds induce $x_{qp} \approx 3.3 \times 10^{-10}.$

Enectali Figueroa-Feliciano \ Northwestern University \ RIKEN Colloquium

Summary of NEXUS Work

- Developed new modular architecture for neutrino physics detectors
- Deploying at Ricochet next year
- R&D for future CUPID upgrades

Low-background Quantum Computing

- Qubit testing underway underground at NEXUS
- Developing R&D program for lowbackground quantum architectures

Designing an Experiment

FNAL group has progress on many fronts towards this goal!

<u>OICK = "Ouantum Instrumentation Control Kit"</u>

Fully integrated readout & control system for QIS, quantum networks, and superconducting detectors

- No extra room temperature hardware needed.
- QICK paper made the cover of AIP RSI
- 11 talks at APS March Meeting (not including the 2 from FNAL)

A factor of ~20 cheaper compared to off-theshelf equipment

Plans for frequency-multiplexed readout and control of multiple qubits this Fall

Stefanazzi et al, Rev. Sci. Instrum. 93, 044709 (2022) [arXiv:2110.00557]

