

Particle Physics Research Centre

Subatomic qbit pairs.

What can we learn?

Prof. Adrian Bevan

a.j.bevan@qmul.ac.uk

Overview

- QMUL's detector development group and facilities
- Preparing pairs of qbits at a B Factory
- Discrete symmetries
- Sidereal time variations
- Questions
- Summary

Note that entanglement in top quark pairs has recently been observed by the ATLAS Collaboration at CERN [ATLAS-CONF-2023-069], which is not covered here.

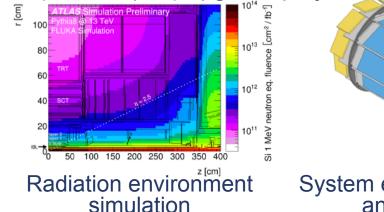
QMUL's detector development group and facilities

- Our mission is to develop novel technologies for fundamental science and apply our skills to solving real world problems
- Currently working on:
 - Silicon detectors for future colliders: High Luminosity Large Hadron Collider at CERN in Switzerland; and an upgrade of the Belle 2 vertex detector for KEK in Japan.
 - Novel radiation detector and forensics solutions for the nuclear sector
 - Novel neutron detectors for medical physics
- See Nicola's talk for some new work we are starting to get involved with

QMUL's detector development group and facilities

- Our nano and micro fabrication expertise spans a wide range of capabilities
 - Quantum device fabrication and testing see Jan Mol's presentation
 - Decades of contributing to silicon detector builds for particle physics
 - OPAL at LEP through to the High Luminosity LHC (ATLAS) and Belle 2 upgrades microelectronics and systems engineering expertise e.g.

Examples from the ATLAS (CERN, Switzerland) and Belle 2 (KEK, Japan) upgrade projects



Jeen Marv •

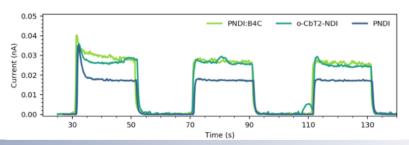
University of London

Micron resolution image capture, testing and quality control for silicon sensors

System engineering design and realisation

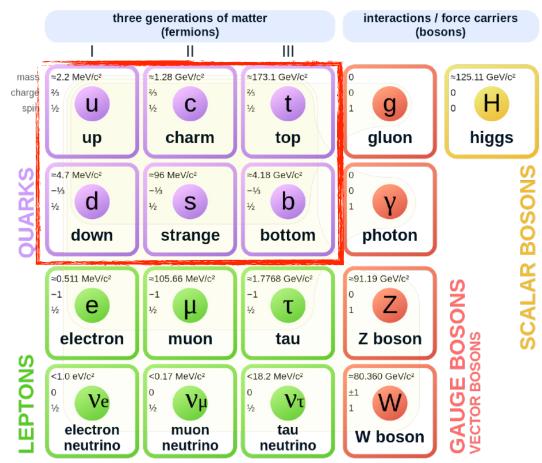
nner Layer (6 Ladden

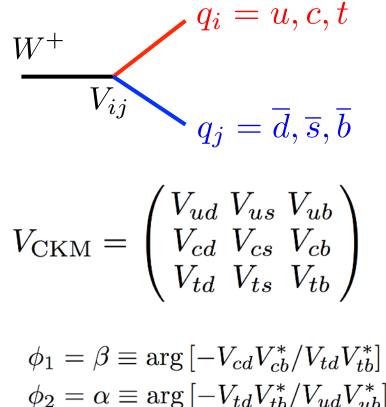
QMUL's detector development group and facilities


- Work on novel and conventional technologies:
 - Silicon for particle physics
 - Curved ultra thin silicon
 - Solution processed electronics and materials for novel hadron and neutron detection capabilities
 - Looking to deploy neutron beam background monitors using this
 - Long range α detection for civil nuclear applications
 - Product development for SME's

Queen Marv 🗸

University of London





Subatomic building blocks

Standard Model of Elementary Particles

 $\phi_2 = \alpha \equiv \arg\left[-V_{td}V_{tb}/V_{ud}V_{ub}\right]$ $\phi_3 = \gamma \equiv \arg\left[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*\right]$

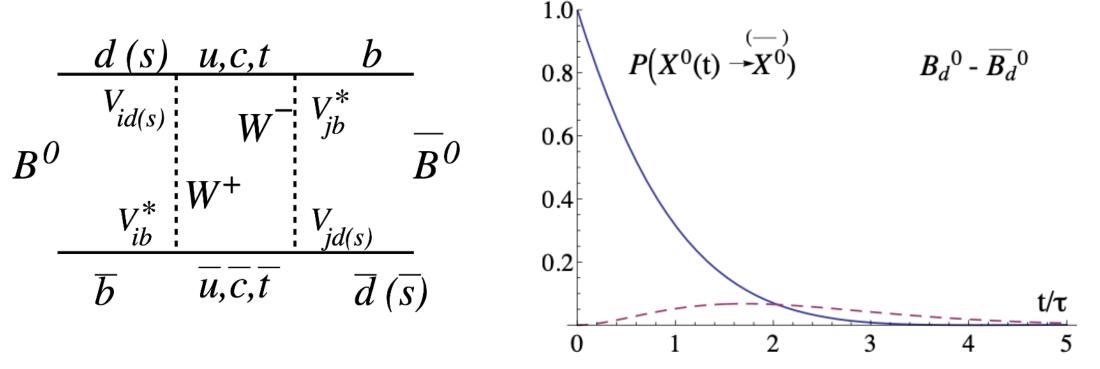
• Entanglement from collisions at the $\Upsilon(4S)$ resonance: 10.58 GeV centre of mass

 $e^+e^- \to B^0\overline{B}^0$

Antisymmetric wave function of an entangled system

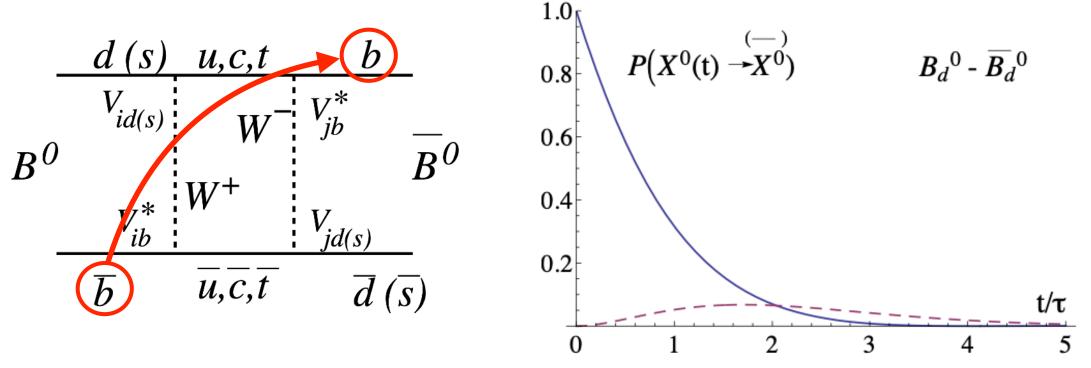
$$\psi = \frac{1}{\sqrt{2}} (|B^0\rangle |\overline{B}^0\rangle - |\overline{B}^0\rangle |B^0\rangle)$$

- Different ways to analyse the states:
 - CP filters
 - Flavour filters

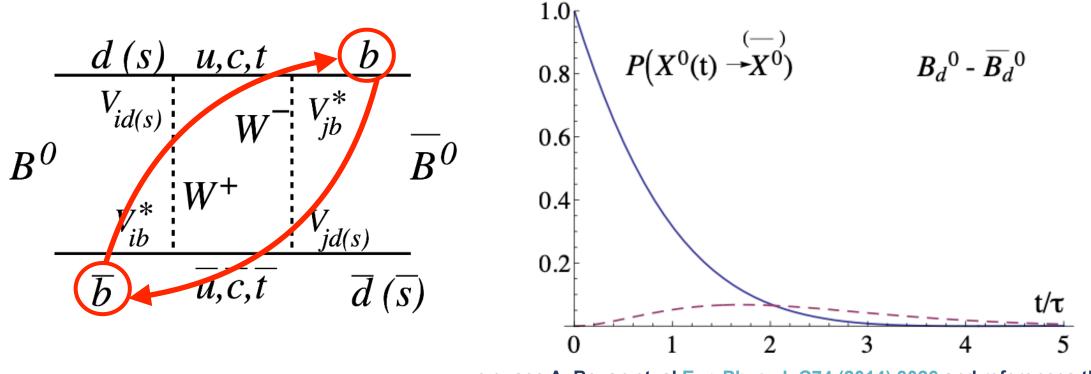

Decays are filters to analyse the quantum state of the B when it decays.

Like B field selection for the Stern Gerlach experiment; but with some important differences

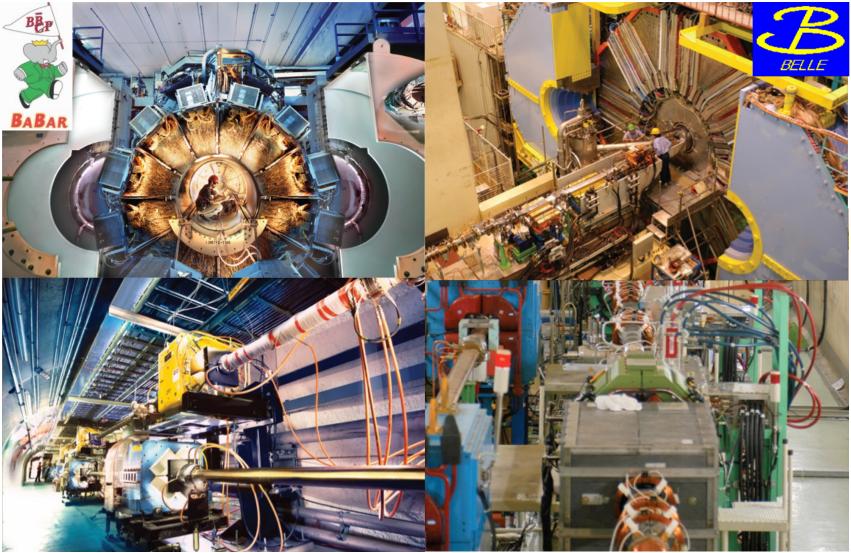
 16 combinations to use discrete symmetries to examine this qbit pair analogue (see later)



- B mesons have a finite lifetime and oscillate between particle and antiparticle
- Oscillation frequency is the mass difference: $\Delta m_d = 0.5065 \,\mathrm{ps}^{-1}$



- B mesons have a finite lifetime and oscillate between particle and antiparticle
- Oscillation frequency is the mass difference: $\Delta m_d = 0.5065 \,\mathrm{ps}^{-1}$



- B mesons have a finite lifetime and oscillate between particle and antiparticle
- Oscillation frequency is the mass difference: $\Delta m_d = 0.5065 \,\mathrm{ps}^{-1}$

Facilities: BaBar @ SLAC, Belle (2) @ KEK

• qbit pairs are initially in

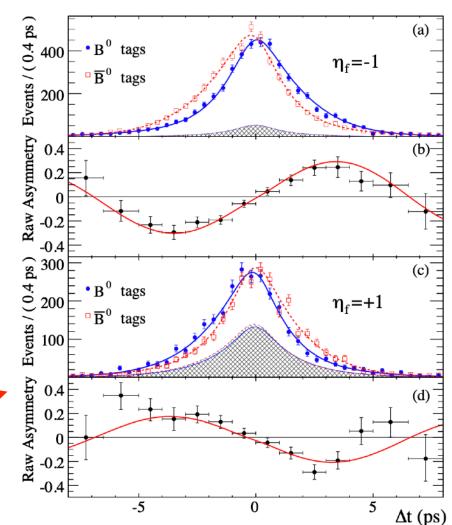
$$\psi = \frac{1}{\sqrt{2}} (|B^0\rangle |\overline{B}^0\rangle - |\overline{B}^0\rangle |B^0\rangle)$$

• which is equivalent to

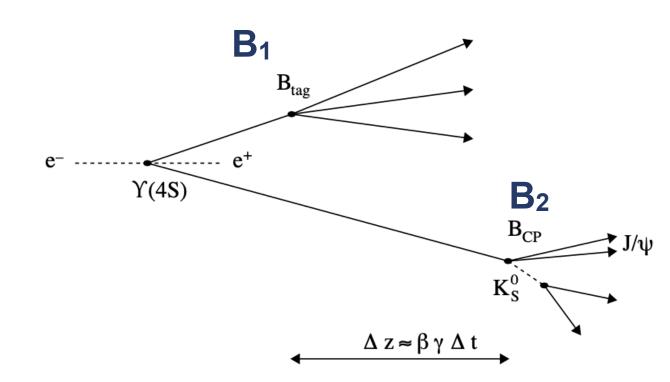
$$\psi = \frac{1}{\sqrt{2}} (|0\rangle |1\rangle - |1\rangle |0\rangle)$$

 At some later time after one of the B mesons decays the data evolves into the four available outcomes, with different probabilities of the states existing at any point in time

 $\psi(t) = \alpha(t) | 0 \rangle | 1 \rangle + \beta(t) | 1 \rangle | 0 \rangle) + \gamma(t) | 0 \rangle | 0 \rangle + \delta(t) | 1 \rangle | 1 \rangle$


• Analyse B mesons via flavour specific final states (B_{tag}, direct link between the strong force/ quark composition of the B and the final state), or via the CP nature of the final state (even/odd, $\eta_{CP} = \pm 1$), B_{CP}.

+ other NCP


- Examples of B_{tag} include
 - $B^0 \to D^{(*)-}(\pi^+, \rho^+, a_1^+)$
 - $\overline{B}{}^0 \rightarrow D^{(*)+}(\pi^-, \rho^-, a_1^-)$
- Examples of B_{CP} include:

Queen Mary · DETECTOR

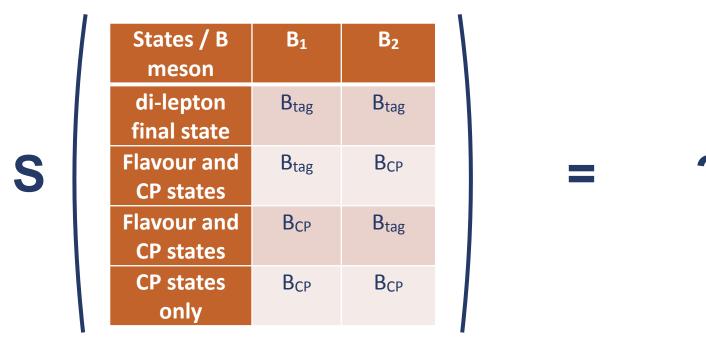
- $B^0 \rightarrow J/\psi K_S^0$, $\eta_{CP} = -1$
- $B^0 \rightarrow J/\psi K_L^0$, $\eta_{CP} = +1$

Analyse the B meson states by their decay products

• Four ways to group the data to enable tests for different fundamental phenomena:

States / B meson	B1	B ₂
di-lepton final state	B _{tag}	B _{tag}
Flavour and CP states	B _{tag}	B _{CP}
Flavour and CP states	B _{CP}	B _{tag}
CP states only	B _{CP}	B _{CP}

 The qbit changes happen in the vacuum of a beam pipe (so these are isolated quantum systems) and we detect the decay products in our detectors.


Discrete symmetries

- Fundamental transformations:
 - C: charge conjugation
 - P: parity spatial inversion
 - T: time-reversal
- Combinations:
 - CP: matter-antimatter asymmetry (CP equivalent to T if CPT is conserved)
 - CPT: balance of CP and time-reversal; conserves Lorentz symmetry
- Interesting tests:
 - T, CP, CPT symmetries: CP and T violated by weak decays, CPT conserved

Discrete symmetries

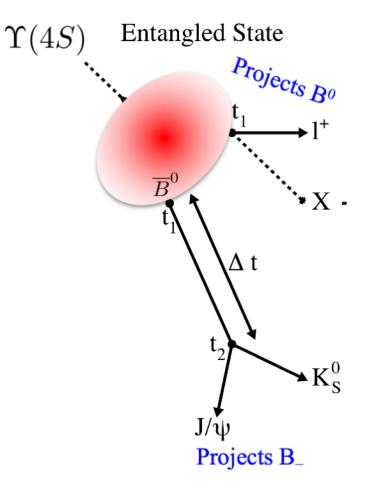
• We can apply these discrete symmetries to our data to understand what physical measurements we can make to test the behaviour

- Typically construct asymmetries that are time dependent or time integrated to look for any interesting patterns
- 16 different asymmetries we can construct

CP, T and CPT asymmetries

• Full set of 16 comparisons listed for B_{CP} and B_{tag} combinations

States / B	B ₁	B ₂		Symmetry	Reference transition	Conjugate transiti
meson				CP	$\overline{M}^0 \to M$	$M^0 \rightarrow M$
di-lepton final state	B _{tag}	B _{tag}			$egin{array}{c} M_+ ightarrow M^0 \ \overline{M}^0 ightarrow M_+ \end{array}$	$M_+ o \overline{M}^0$ $M^0 o M_+$
	D	D			$M \rightarrow M^0$	$M_{-} \rightarrow \overline{M}^{0}$
Flavour and CP states	B tag	B _{CP}		T	$\overline{M}^0 ightarrow M \ M_{\pm} ightarrow M^0$	$\begin{array}{c} M_{-} \rightarrow \overline{M}^{0} \\ M^{0} \rightarrow M_{+} \end{array}$
Flavour and	B _{CP}	B _{tag}			$\overline{M}^0 o M_+ \ M o M^0$	$egin{array}{c} M_+ ightarrow \overline{M}^0 \ M^0 ightarrow M \end{array}$
CP states				CPT	$\overline{M}^0 \to M$	$M \rightarrow M^0$
CP states	B _{CP}	B _{CP}			$M_+ ightarrow M^0$	$\overline{M}^0 \to M_+ \\ M \to \overline{M}^0$
only			$\sim \sim$		$M^0 ightarrow M \ M_+ ightarrow \overline{M}^0$	$M_{-} \rightarrow M$ $M^{0} \rightarrow M_{+}$


Δ

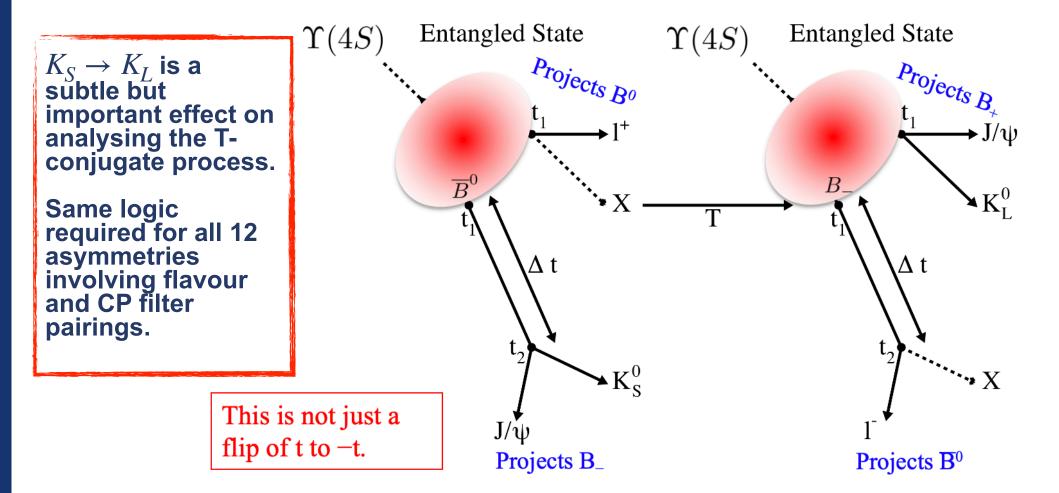
Adrian Bevan 17

S

T conjugate B mesons: $\overline{B}^0 \to B_-$

1) At time t_1 the wave function collapses into the state: $B^0 \overline{B}^0$

2) The B⁰ promptly decays to a flavor state <u>via</u>: l^+X .

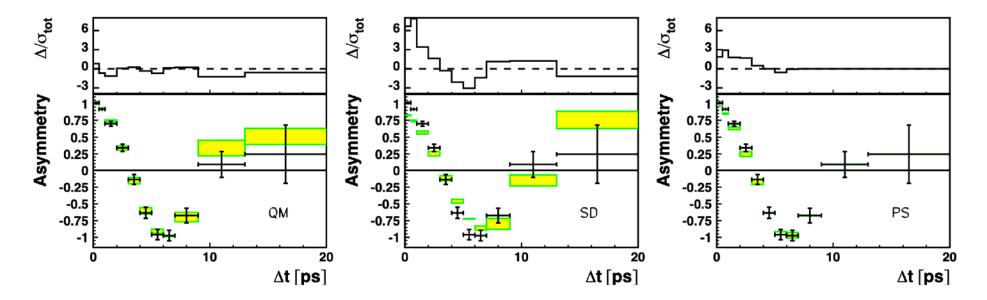

3) The second B evolves naturally thereafter until it too decays.

4) At some later time t_2 the second B decays as a B_{-} .

$$\Delta t = t_2 - t_1$$

T conjugate B mesons: $T(\overline{B}^0 \to B_-) = B_- \to \overline{B}^0$

$$\Delta t = t_2 - t_1$$


Interesting tests

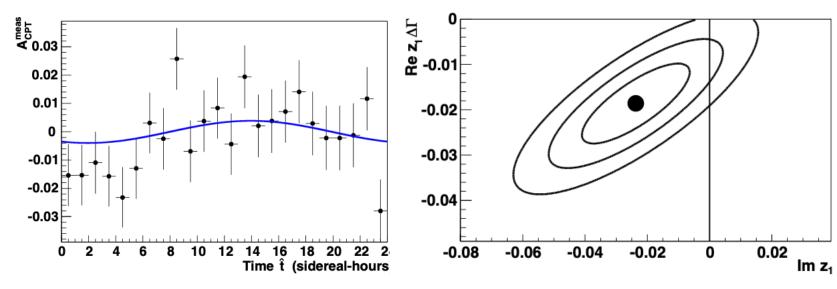
- $CP \rightarrow matter antimatter asymmetries$
- $T \rightarrow time \ reversal \ symmetry$
- CPT → combination of the above, conserved in locally invariant gauge theory (e.g. the Standard Model of Particle Physics), and linked to Lorentz symmetry
- Wave function decoherence, linked to Lorentz symmetry violation and quantum gravity
- Can measure via:
 - Time integrated
 - Time-dependent
 - Sidereal time dependent analyses

Wave function decoherence

- The Belle experiment, Tsukuba, Japan tested for decoherence
- Measure decays as a function of the proper time difference

- Results consistent with Quantum Mechanics (QM) and inconsistent with two other local realistic models (Pompili-Selleri [PS] and Spontaneous Disentanglement [SD])
- No decoherence evident in data

Queen Marv ·


University of London

Go. et al., PRL 99 131802 (2007). <u>quant-ph/0702267</u>.

Sidereal time-dependent measurement

- The BaBar experiment, SLAC, California tested Lorentz symmetry
- Measure decays as a function of the sidereal time dependence
- Look for wave function decoherence: $z \neq 0$

$$\begin{aligned} |B_L\rangle &= p\sqrt{1-z} |B^0\rangle + q\sqrt{1+z} |\overline{B}^0\rangle \\ |B_H\rangle &= p\sqrt{1+z} |B^0\rangle - q\sqrt{1-z} |\overline{B}^0\rangle \end{aligned}$$

z found to be consistent with zero; consistent with CPT (and Lorentz symmetry) being conserved: BaBar <u>Phys.Rev.Lett.100:131802 (2008)</u>

Subsequent suggestions have been made on possible better ways to analyse the data e.g. Tilburg and Veghel <u>Phys. Lett. B742 (2015) 236</u>

Known limitations

- The entangled B meson pairs passively decay into final states that allow measurements to be made:
 - No control over mixing phase or filter decay for a given data point.
 - Not possible to perform a test of Bell's inequalities using these systems.
 - B mixing is too slow for the B_d meson to make a viable test. The critical parameter is x_q (> 2):

$$x_q = \frac{\Delta m_q}{\Delta \Gamma_a}, x_d = (0.775 \pm 0.007)$$

• It is plausible to make a test of Bell's inequalities for B_s mesons at some point in the future if data permits ($x_s = 26.82$), but not with B_d mesons.

Bertlmann, Bramon, Garbarino, and Hiesmayr, PRL A332 355–360 (2004). <u>quant-ph/0409051</u>.

Questions

- What can we learn from these tests of qbit pairs about fundamental science?
 - Tests of: CP, T, CPT, Lorentz Symmety & wave function decoherence, +
 … ?
- Can we learn anything useful from these systems that may help us understand macroscopic quantum devices?
- Can we get a deeper understanding of fundamental physics by understanding how macroscopic devices work and reflecting on that in this subatomic system?

Summary

- Entanglement for pairs of qbits has been studied extensively for decades at B Factories
- Used quantum mechanics to test fundamental symmetries
 - e.g. led to the discovery of CP violation in B mesons, and subsequently the Nobel Prize for Kobayashi and Maskawa in 2008
- Some tests noted today have yet to be performed
- Questions arise as to what we can learn from this work to inspire macroscopic tests using ensembles of qbits and vice versa

