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Why care about more hadrons?

Semileptonic decays comprise more than 10% of 
all B-meson decays

Ideal laboratory to determine  with multiple 
complementary approaches

Allows for precise tests of lepton flavour 
universality

Important background for  decays and 
other rare processes, such as 

More than a quarter contain more than one final-
state hadron (see Raynette’s talk for issues 
regarding  and  pheno in general)
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Why care about more hadrons?

LHCb Collaboration, PRL 131 111802 (2023) Belle II Collaboration, PRL 132 211804 (2024)

Relevant for  &  measurementsR(D(*)) R(X)

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.111802
https://doi.org/10.1103/PhysRevLett.132.211804


Why care about more hadrons?

Situation worse for  transitions

The exclusive modes we know only make up a 
third of all semileptonic decays

Separating  from other  
decays highly model dependent

Lattice QCD results for  on the 
horizon (see L. Leskovec et al. 2403.19543)

b → uℓν

B → ρℓν B → ππℓν

B → ππℓνππ

ω
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https://arxiv.org/abs/2403.19543


Why care about more hadrons?

Belle II collaboration, 2407.17403

Continuum & Simulated sample 
size can be improved in the future 
(see Jochen’s talk?)

Modelling itself does not simply 
get better

Lineshapes generally process-
dependent

What on earth is nonresonant 
?B → ππℓν

https://arxiv.org/abs/2407.17403


What do we need going forward?

Model-independent parameterizations like BGL and its modifications such as BCL have played a 
crucial role in the past three decades

Surprisingly simple form (although issues with truncation, see Talks by Florian, Stefan, Andreas)

Allow to connect theoretical & experimental information from different kinematical regions

General, but still allow to impose symmetry constraints (e.g. HQET, see Nico’s Talk)

In use beyond semileptonic -decays: Pion VFF, Lepton-Nucleon scattering, …B

We want a model-independent parameterization for two-hadron final 
states that has the same strengths as the BGL expansion 



Theoretical fundamentals: Unitarity bounds
Starting point: once and twice subtracted 
dispersion relations [Boyd, Grinstein, Lebed; Caprini; …]

Susceptibilities perturbatively computable for 
large space-like  or at  if heavy quarks 
involved; also on the Lattice! (Martinelli, Simula, Vittorio; 

Harrison)

Optical theorem allows to write the imaginary 
part as sum over all possible final states

Neglecting a final state leads to an inequality
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https://doi.org/10.1103/PhysRevD.104.094512
https://doi.org/10.1103/PhysRevD.110.054506


Theoretical fundamentals: Unitarity bounds

Mapping  to the dimensionless variable  
transforms integration region to unit circle

In this form it is evident that our FFs live in the 
Hardy space 

Insert Blaschke products to get rid of 
subthreshold poles and zeroes in kinematic 
factors

Series expansion (or orthogonal polynomials)

Semileptonic region: 
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Theoretical Fundamentals:  scattering2 → 2

Simplest scattering process with nontrivial 
kinematic dependence

Described by unitary operator 

Scattering amplitude  depends on 2 
independent Mandelstam variables

 real below lowest threshold, imaginary part 
constrained by Unitarity above

Two-particle production amplitude  shares 
phase with , e.g. pion production in lepton 
collisions
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Partial-wave expansion for dummies

Resonances have well-defined spin, their poles 
only occur in a specific partial wave of 

Partial-wave expansion conveniently separates 
different resonances, e.g. in pion scattering: 

Partial-wave expanded amplitudes have left-
handed branch cuts which are remnants of 
branch cuts in other Mandelstam variables

Diagonal elements can be expressed through 
scattering phase  and inelasticity  

ℳ
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Ingredient 3: Left-hand cuts
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Phase-shifts are everything

Below the first inelastic threshold, the elastic 
scattering phase is universal

Omnès function is a model-independent way to 
transport this information

Common treatment of lineshapes in 
, , , 

, …

Works best for light mesons, , , but also S-
wave 

Extensions beyond first inelastic threshold clear

e+e− → π+π− τ → π−π0ντ K → ππℓν
B(s) → J/Ψπ+π−
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Phase-shifts are everything

Below the first inelastic threshold, the elastic 
scattering phase is universal

Omnès function is a model-independent way to 
transport this information

Common treatment of lineshapes in 
, , , 

, …

Works best for light mesons, , , but also S-
wave 

Extensions beyond first inelastic threshold clear

e+e− → π+π− τ → π−π0ντ K → ππℓν
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Ingredient 4: Omnès functions for lineshapes



Theoretical fundamentals:  Three-body decays

Amplitudes relevant for Unitarity bounds are 
 amplitudes of particle with mass 

Khuri-Treiman formalism already has 2 of our 
ingredients built in (PR 119 1115-1121 (1960))

Write decay amplitude as sum of 3 partial-
wave expanded amplitudes

Fixed ,  &  dispersion-relations lead to 
coupled system of integral equations

The two other channels enter via hat 
functions
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https://doi.org/10.1103/PhysRev.119.1115


Theoretical fundamentals:  Three-body decays

Amplitudes relevant for Unitarity bounds are 
 amplitudes of particle with mass 

Khuri-Treiman formalism already has 2 of our 
ingredients built in (PR 119 1115-1121 (1960))

Write decay amplitude as sum of 3 partial-
wave expanded amplitudes

Fixed ,  &  dispersion-relations lead to 
coupled system of integral equations

The two other channels enter via hat 
functions (here we could use  FFs)

1 → n q2

s t u

B* → D(*)

Taken from: EPJC 83 (2023) 6, 510
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A new parameterization

Amplitudes implicitly depend on mass

-dependence not polynomial above inelastic 
thresholds

Find unitarity bound and parameterization for 

The hat functions now depend on  FFs
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A new parameterization

Unitarity bounds in general off-diagonal

Off-diagonal terms small, ignore for derivation 
of parameterization

Similar to KT treatment: ignore left-hand cuts 
and add them back later

Crucial: change integration order!
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A new parameterization
-integration as in standard BGL

If  larger than lowest two-body threshold: 

Now we can treat every  as an -dependent FF

Follow Caprini’s treatment of pion VFF, (EPJ C 13 

471-484 (2000))

Alternative: BCL-like expansion
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Putting it all together
A model-independent parameterization of  decays is possible, building on 60+ years of dispersion theory

Bound on  quadratic, but not diagonal

In heavy-to-heavy decays the left-hand cuts are far from the semileptonic region, so we can ignore integrals 
over hat functions

Simplified application to  successful and  including implementation in EOS underway (  
Raynette’s Talk)

Powerful framework for many future phenomenological applications 
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