

Improving our understanding of $B \rightarrow D\pi \ell \nu \& B \rightarrow \pi \pi \ell \nu$ decays

Raynette van Tonder

raynette.vantonder@mail.mcgill.ca

In collaboration with:

- E. Gustafson, F. Herren, B. Kubis,
- R. Van de Water & M. Wagman

$B \rightarrow X \ell \nu$ modelling & composition

 $B \rightarrow X \ell \nu$ modelling is like the Hundertwasserhaus:

$B \rightarrow X \ell \nu$ modelling & composition

 $B \rightarrow X \ell \nu$ modelling is like the Hundertwasserhaus:

Each individual process is an important building block with its own characteristic shape and style...

$B \rightarrow X \ell \nu$ modelling & composition

 $B \rightarrow X \ell \nu$ modelling is like the Hundertwasserhaus:

Each individual process is an important building block with its own characteristic shape and style...

Together they form a wonky, yet beautiful, piece of architecture.

Some blocks are still missing...

A leading systematic for many analyses (not just semileptonic):

			$\mathcal{B}(\mathbb{R})$	$B^+ \to X_c^0$	$\ell^+ u_\ell) pprox$	10.79 %	6		
	${ m D}^0\ell^+ u_\ell\ 2.31\%$		$D^{*0}\ell^+ u_\ell$ 5.05 %				$egin{array}{c c} \mathrm{D}^{**0}\ell^+ u_\ell + \mathrm{Other} & \mathrm{Gap}\ 2.38\% & \sim 1.05 \end{array}$		or is it even bigger?
Decay			$\mathcal{B}(B^+)$		$\mathcal{B}(B^0)$				
$B \to D$ $B \to D$	$\ell^+ u_\ell \ ^* \ell^+ u_\ell$	(2.4 ± 0) (5.5 ± 0)	$(.1) \times 10^{-2}$ $(.1) \times 10^{-2}$	(2.2 ± 0.1) (5.1 ± 0.1)	$\begin{array}{c} \times \ 10^{-2} \\ \times \ 10^{-2} \end{array}$	-	Fairly well k	nown.	
$B \to D_1$ $B \to D_2$ $B \to D_0$	$_{1}^{1}\ell^{+} u_{\ell}^{2}\ell^{+} u_{\ell}^{2}\ell^{+} u_{\ell}^{0}\ell^{+} u_{\ell}^{0}$	(6.6 ± 0) (2.9 ± 0) (4.2 ± 0)	$(.1) \times 10^{-3}$ $(.3) \times 10^{-3}$ $(.8) \times 10^{-3}$	(6.2 ± 0.1) (2.7 ± 0.3) (3.9 ± 0.7)	$\begin{array}{l} \times \ 10^{-3} \\ \times \ 10^{-3} \\ \times \ 10^{-3} \end{array}$		Broad states k 3 measurer (BaBar, Belle,	based on nents. DELPHI)	
$B \rightarrow D'_{1}$ $B \rightarrow D'_{2}$ $B \rightarrow D'_{2}$	${}^{\prime}_{1} \ell^{+} \nu_{\ell}$ $\pi \pi \ell^{+} \nu_{\ell}$ ${}^{*} \pi \pi \ell^{+} \nu_{\ell}$	(4.2 ± 0) (0.6 ± 0) (2.2 ± 1)	$(.9) \times 10^{-3}$ $(.9) \times 10^{-3}$ $(.0) \times 10^{-3}$	(3.9 ± 0.8) (0.6 ± 0.9) (2.0 ± 1.0)	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$		Some hints BaBar & rece result.	from nt Belle	
		U	Š.				Tooditi		
$B \to X_{c}$	$c_c \ell u_\ell$	$(10.8 \pm 0$	$(.4) \times 10^{-2}$	(10.1 ± 0.4)	$\times 10^{-2}$				

5

Some blocks are still missing...

A leading systematic for many analyses (not just semileptonic):

-	◀		$\mathcal{B}(\mathbb{R})$	$B^+ \to X^0_{\rm c} \ell$	$^{+}\nu_{\ell}) \approx$	10.79 %	0		
	${f D}^0\ell^+ u_\ell$ 2.31 %			${ m D}^{*0}\ell^+ u_\ell$ 5.05%			${f D^{**0}}\ell^+ u_\ell + {f Other} \ 2.38\%$	$\begin{array}{c} \text{Gap} \\ \sim 1.05 \% \end{array}$	or is it even bigger?
Decay			$\mathcal{B}(B^+)$		$\overline{\mathcal{B}(B^0)}$				
$\begin{array}{c} B \to D \ell \\ B \to D^* \end{array}$	$\ell^+ u_\ell l^+ u_\ell$	(2.4 ± 0.5) (5.5 ± 0.5)	$(1) \times 10^{-2}$ $(1) \times 10^{-2}$	(2.2 ± 0.1) × (5.1 ± 0.1) ×	$\times 10^{-2} \\ \times 10^{-2}$		Fairly well k	nown.	
$B \to D_1$ $B \to D_2^*$ $B \to D_0^*$	$\ell^+ u_\ell \ \ell^+ u_\ell \ \ell^+ u_\ell$	(6.6 ± 0.0) (2.9 ± 0.0) (4.2 ± 0.0)	$(1) \times 10^{-3}$ $(3) \times 10^{-3}$ $(8) \times 10^{-3}$	(6.2 ± 0.1) × (2.7 ± 0.3) × (3.9 ± 0.7) ×	$\times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-3}$		Broad states k 3 measurer (BaBar, Belle,	based on nents. DELPHI)	
$B \to D'_1$ $B \to D\pi$ $B \to D^*$ $B \to D^*$	$\ell^{+} \nu_{\ell}$ $\pi \ell^{+} \nu_{\ell}$ $\pi \pi \ell^{+} \nu_{\ell}$	(4.2 ± 0.00) (0.6 ± 0.00) (2.2 ± 1.00) (4.0 ± 4.00)	$\begin{array}{l} (.9) \times 10^{-3} \\ (.9) \times 10^{-3} \\ (.0) \times 10^{-3} \\ (.0) \times 10^{-3} \end{array}$	(3.9 ± 0.8) (0.6 ± 0.9) (2.0 ± 1.0)	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$		Some hints BaBar & recer result.	from nt Belle	
$\begin{array}{c} D \to D \eta \\ B \to D^* \eta \\ B \to X_c \end{array}$	$ \begin{array}{c} \nu_{\ell} \\ \eta \ell^+ \nu_{\ell} \\ \ell \nu_{\ell} \end{array} $	(4.0 ± 4.0) (4.0 ± 4.0) (10.8 ± 0.0)	$(0) \times 10^{-3}$ (4) $\times 10^{-2}$	(4.0 ± 4.0) × (4.0 ± 4.0) × (10.1 ± 0.4) ×	$\times 10^{-3}$ × 10^{-2}		Fill the gap wit "best gue	h current ss".	Ż

So what do we know about $B \rightarrow D\pi \ell \nu$?

$$\vec{f}(q^2, M_{D\pi}^2) = \Omega(M_{D\pi}^2)\vec{P}(q^2)$$

A "how-to" for $B \to D\pi \ell \nu$

Numerically solve the integral equation for the Omnès matrix:

Im $\Omega(s+i\epsilon) = \frac{1}{\pi} \int_{s_{\text{thr}}}^{\infty} \frac{T^*(s')\Sigma(s')\Omega(s')}{s'-s-i\epsilon} \mathrm{d}s'$

$$\vec{f}(q^2, M_{D\pi}^2) = \Omega(M_{D\pi}^2)\vec{P}(q^2)$$

A "how-to" for $B \to D\pi \ell \nu$

Numerically solve the integral equation for the Omnès matrix:

$$\operatorname{Im} \Omega(s+i\epsilon) = \frac{1}{\pi} \int_{s_{\mathrm{thr}}}^{\infty} \frac{T^*(s')\Sigma(s')\Omega(s')}{s'-s-i\epsilon} \mathrm{d}s'$$
$$\vec{f}(q^2, M_{D\pi}^2) = \Omega(M_{D\pi}^2)\vec{P}(q^2)$$

The Omnès Matrix describes the **interactions** between **final state hadrons** and the **lineshapes of resonances**:

- T is the T matrix and Σ contains the relevant **phase-space factors**
- Allows simultaneous extraction of: $B \to D\pi \ell \nu, B \to D_s K \ell \nu$ and $B \to D\eta \ell \nu$

A "how-to" for $B \rightarrow D\pi \ell \nu$

Numerically solve the integral equation for the Omnès matrix:

Im
$$\Omega(s+i\epsilon) = \frac{1}{\pi} \int_{s_{thr}}^{\infty} \frac{T^*(s')\Sigma(s')\Omega(s')}{s'-s-i\epsilon} ds'$$

 $\vec{f}(q^2, M_{D\pi}^2) = \Omega(M_{D\pi}^2)\vec{P}(q^2)$
PLB 767 (2017) 465-469
Hadron Spectrum: JHEP 10 (2016) 011
The Omnès Matrix describes the interactions between final state hadrons and the lineshapes of resonances:
• T is the T matrix and Σ contains the relevant phase-space factors
• Allows simultaneous extraction of:
 $B \rightarrow D\pi\ell\nu, B \rightarrow D_s K\ell\nu$ and $B \rightarrow D\eta\ell\nu$

18

E (MeV)

A "how-to" for $B \to D\pi \ell \nu$

Numerically solve the integral equation for the Omnès matrix.

Step #2: Unitarity bounds

Generalize BGL unitarity bounds to **multi-hadron final states.**

$$\vec{f}(q^2, M_{D\pi}^2) = \Omega(M_{D\pi}^2)\vec{P}(q^2)$$

A "how-to" for $B \to D\pi \ell \nu$

A "how-to" for $B \to D\pi \ell \nu$

Numerically solve the integral equation for the Omnès matrix.

Step #2: Unitarity bounds

Generalize BGL unitarity bounds to **multi-hadron final states.** See Florian Herren's talk.

$$\vec{f}(q^2, M_{D\pi}^2) = \Omega(M_{D\pi}^2)\vec{P}(q^2)$$

Step #3: Fit to $M_{D\pi}$ -spectrum

- Latest Belle results: PRD 107 (2023) 9, 092003
- Combined fit to both charged modes.
- We do not include data above 2.55 GeV;
 - To **avoid influence** from unknown higher resonances.
- Use **PDG averages** for D_2^* mass and width.

A "how-to" for $B \to D\pi \ell \nu$

Numerically solve the integral equation for the Omnès matrix.

Step #2: Unitarity bounds

Generalize BGL unitarity bounds to **multi-hadron final states.** See Florian Herren's talk.

Additional constraints

• Recently, it was pointed out that virtual D^* contributions should be taken into account in semileptonic decays.

- We introduce Blatt-Weisskopf damping factors and include r_{BW} as fit parameter.
- Use FNAL/MILC D^* FFs and fit after integrating over the $D\pi$ invariant mass.

• The D_2^* FFs are fitted to the spectra measured by Belle with loose constraints on:

-
$$B \to D_2^* (\to D\pi) \ell \nu$$
 decay rate

$$B \to D_2^* (\to D\pi)\pi/K$$
 BFs

• Uncertainties could be decreased by implementing the HQET constraints present in the LLSW parametrization.

Additional constraints

• Recently, it was pointed out that virtual D^* contributions should be taken into account in semileptonic decays.

- We introduce Blatt-Weisskopf damping factors and include r_{BW} as fit parameter.
- Use FNAL/MILC D^* FFs and fit after integrating over the $D\pi$ invariant mass.

• The D_2^* FFs are fitted to the spectra measured by Belle with loose constraints on:

-
$$B \to D_2^* (\to D\pi) \ell \nu$$
 decay rate

$$B \to D_2^* (\to D\pi)\pi/K$$
 BFs

• Uncertainties could be decreased by implementing the HQET constraints present in the LLSW parametrization.

Results & predictions

Our paper:

arXiv:2311.00864

 We find a significantly larger D^{*}₂ yield than quoted by the PDG.

Results & predictions

Our paper:

arXiv:2311.00864

2311 00864

3.5

3

 Our D* and S-wave contributions drop off faster than the falling exponential used by Belle.

1.5

2

 $10^3 \times \operatorname{Br}(B \to D_2^{\bigstar} (\to D\pi^{\pm}) \ell^{\pm} \nu_{\ell})$

2.5

1

0

0.5

Results & predictions

Our paper:

arXiv:2311.00864

- We find a significantly larger D^{*}₂ yield than quoted by the PDG.
- Our D* and S-wave contributions drop off faster than the falling exponential used by Belle.
- S-Wave $B \rightarrow D\eta \ell \nu$ decays cannot account for the gap between the inclusive BF and the sum of exclusive decays.
- By heavy quark symmetry $B \to D^* \eta \ell \nu$ decays will also be subdominant.

Prediction: Br($B \rightarrow D\eta \ell \bar{\nu}_{\ell}$) = (1.9 ± 1.7) × 10⁻⁵

$|V_{ub}|$ and the $B \to \rho \ell \nu$ conundrum

• Recent Belle II results shown at Moriond EW 2024 report lower $|V_{ub}|$ value from $B \to \rho \ell \nu$ decays than from $B \to \pi \ell \nu$.

$|V_{ub}|$ and the $B\to\rho\ell\nu$ conundrum

• Recent Belle II results shown at Moriond EW 2024 report lower $|V_{ub}|$ value from $B \to \rho \ell \nu$ decays than from $B \to \pi \ell \nu$.

- We collect **measurements** from many different sources for the **lineshapes**:
 - P-wave (the dominant contribution),
 - D-wave (the sub-dominant contribution),
 - last, but not least, the S-wave.

- We collect **measurements** from many different sources for the **lineshapes**:
 - P-wave (the dominant contribution),
 - D-wave (the sub-dominant contribution),
 - last, but not least, the S-wave.

Data from $e^+e^- \rightarrow \pi^+\pi^-$ production provides a high precision determination of the P-wave phase.

 \mathbf{P} For single-channel problems, this is everything we need for the Omnès factor.

32

- We collect **measurements** from many different sources for the **lineshapes**:
 - P-wave (the dominant contribution),
 - D-wave (the sub-dominant contribution),
 - last, but not least, the S-wave.

Data from $\pi^+\pi^- \rightarrow \pi^+\pi^-$ scattering gives the necessary information to describe the $f_2(1270)$ resonance.

PRD 74 (2006) 014001

- We collect **measurements** from many different sources for the **lineshapes**:
 - P-wave (the dominant contribution),
 - D-wave (the sub-dominant contribution),
 - last, but not least, the S-wave.

A coupled-channel analysis of $\bar{B}^0_{d/s} \to J/\psi \pi \pi$ decays provide the last piece of the puzzle.

JHEP 02 (2016) 009

- We collect **measurements** from many different sources for the **lineshapes**:
 - P-wave (the dominant contribution),
 - D-wave (the sub-dominant contribution),
 - last, but not least, the S-wave.

A recent Belle measurement of $B^+ \to \pi^+ \pi^- \ell^+ \nu$ decays provides 2-D correlated spectra of $q^2 \& M_{\pi^+\pi^-}$. We fit to the 2-D spectra using the <u>EOS package</u>.

PRD 103 (2021) 11, 112001

Thanks to Danny van Dyk and Méril Reboud for assistance.

Preliminary results

- We provide a complete description:
 - Lineshapes, form factors, and correlated uncertainties.
- Currently working on refining the unitarity bounds by including additional processes.
- The final results will be available in EOS for direct interfacing with future analyses.

- We developed a **powerful framework** allowing for the **complete description** of processes with 2 hadrons in the final state,
- We **improve the modelling** of many processes of interest to ongoing experimental analyses:

- We developed a **powerful framework** allowing for the **complete description** of processes with 2 hadrons in the final state,
- We **improve the modelling** of many processes of interest to ongoing experimental analyses:

 $B \to D^{**}\ell\nu$

- D^{*}₀ and friends are not what we think they are. We need more spectra (not BFs) to disentangle different resonances.
- The *D** tail should be correctly handled in MC!

- We developed a **powerful framework** allowing for the **complete description** of processes with 2 hadrons in the final state,
- We **improve the modelling** of many processes of interest to ongoing experimental analyses:

 $B \to D^{**}\ell\nu$

- D^{*}₀ and friends are not what we think they are. We need more spectra (not BFs) to disentangle different resonances.
- The *D** tail should be correctly handled in MC!

$$B \to D^{(*)} \eta \ell \nu \quad \& \quad B \to X_c \ell \nu$$

 We rule out the current "best guess" used to fill the semileptonic gap.

(So stop saying it could fill the gap, prove it with direct experimental evidence.)

- We developed a **powerful framework** allowing for the **complete description** of processes with 2 hadrons in the final state,
- We **improve the modelling** of many processes of interest to ongoing experimental analyses:

 $B \to D^{**}\ell\nu$

- D^{*}₀ and friends are not what we think they are. We need more spectra (not BFs) to disentangle different resonances.
- The *D** tail should be correctly handled in MC!

$$B \to D^{(*)} \eta \ell \nu \quad \& \quad B \to X_c \ell \nu$$

 We rule out the current "best guess" used to fill the semileptonic gap.

(So stop saying it could fill the gap, prove it with direct experimental evidence.)

 $B \to \rho \ell \nu \quad \& \quad B \to X_u \ell \nu$

- We provide lineshapes and form factors for all $B \rightarrow \pi \pi \ell \nu$ decays.
- Looking forward to upcoming lattice results.
- It would be interesting to see LCSR calculations using our parametrization!

- We developed a **powerful framework** allowing for the **complete description** of processes with 2 hadrons in the final state,
- We **improve the modelling** of many processes of interest to ongoing experimental analyses:

 $B \to D^{**}\ell\nu$

- D^{*}₀ and friends are not what we think they are. We need more spectra (not BFs) to disentangle different resonances.
- The *D** tail should be correctly handled in MC!

 $B \to D^{(*)} \eta \ell \nu \quad \& \quad B \to X_c \ell \nu$

- We rule out the current "best guess" used to fill the semileptonic gap.

(So stop saying it could fill the gap, prove it with direct experimental evidence.)

 $B \rightarrow \rho \ell \nu$ & $B \rightarrow X_u \ell \nu$

- We provide lineshapes and form factors for all $B \rightarrow \pi \pi \ell \nu$ decays.
- Looking forward to upcoming lattice results.
- It would be interesting to see LCSR calculations using our parametrization!

$B_s \to DK\ell\nu$ & $B \to ??\ell\nu$

- Next on the menu: $B_s \rightarrow DK\ell\nu$ can be treated similarly to $B \rightarrow D\pi\ell\nu$.
- We're always open to suggestions and fruitful collaborations!

Thank you for your attention!

A tale of two 'gap' models

0.0

0

2

3

 M_X (GeV)

2.5

3.0

2.0

0.0 ∟ 0.0

0.5

1.0

1.5

 E_B^{ℓ} (GeV)

0.00

5

0

10

5

20

15

 q^2 (GeV²)

25

30

The ω phase-shift

• Since the phases are known for both the ρ and ω , we follow standard procedures based on the works of Leutwyler to treat the ρ - ω interference.

