$\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$ with hadronic tagging at BABAR

[PRL123,091801(2019) + PRD110,032018(2024)]

Biplab Dey

(on behalf of the BaBar Collaboration) Challenges in SL decays, Vienna 2024

Biplab Dey

$|V_{ub}|$ and $|V_{cb}|$: Flagship SM variables

• V_{xb} play critical roles in the unitarity test of V_{CKM} .

- $\sin 2\beta$ (loop) known to better than 2%. Side opposite is $|V_{ub}|/|V_{cb}|$.
- Rare FCNC processes $\propto |V_{cb}|^2 \left[\frac{|V_{tb}^*V_{ts}|^2}{|V_{cb}|^2}\right] \Rightarrow$ theory uncertainty.

Biplab Dey

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

Sept 24, 2024 2/20

$|V_{ub}|$ and $|V_{cb}|$: procedures and tensions

• Leptonic $B_{u,c}^+ \to \tau^+ \nu_{\tau}$: theoretically clean, experimentally hard.

X_{u,c} is exclusive {π, ρ, ω, D^(*)...}. Or inclusive sum of states.

- Different theory inputs: OPE (inclusive) and FFs (exclusive)
- Exclusive systematically lower than inclusive for both $|V_{ub}|$ and $|V_{cb}|$ by ~ 5-10%.
- QCD effects, experimental issues with the normalizations, or NP?

TO TAG OR NOT TO TAG

B(B→X_cℓ⁻ν_ℓ) ~ 10%. Dominant statistics, but at least one missing neutrino ⇒ hadronic tagging at e⁺e⁻ machines.

• BF measurements: calibration for ensuring $\frac{\epsilon_{\text{tag}}^{\text{MC}}|_{\text{signal}}}{\epsilon_{\text{tag}}^{\text{MC}}|_{\text{control}}} \rightarrow 1$ is hard.

Biplab Dey

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

Sept 24, 2024 4 / 20

$B \to D \ell^- \overline{\nu}_\ell$

[PRD110,032018 (2024)]

$\overline{B} \to D\ell^- \overline{\nu}_\ell$: Original motivation

- θ_{ℓ} : lepton helicity angle in W^* rest frame.
- In SM, (almost) pure $\sin^2 \theta_{\ell}$. Look for non-zero $F_{\rm H}$ and $A_{\rm FB}$ in rate $\propto \frac{3}{4}(1 F_{\rm H}) \sin^2 \theta_{\ell} + \frac{1}{2}F_{\rm H} + A_{\rm FB} \cos \theta_{\ell} \Rightarrow \text{SM null test.}$

• $\overline{B} \to D\ell^- \overline{\nu}_{\ell}$ at BABAR complicated by the fact it's a sum of 10 different modes with independent backgrounds, angular efficiencies.

Biplab Dey

$B \to D \ell^- \overline{\nu}_\ell$: Analysis setup

• Full BABAR dataset w/ hadronic tagging. 2d problem in $\{q^2, \cos \theta_\ell\}$.

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_\ell} = \frac{G_F^2 |V_{cb}|^2 \eta_{\mathrm{EW}}^2}{32\pi^3} k^3 |f_+(q^2)|^2 \sin^2\theta_\ell$$

- Rate factorizes but efficiency and background correlated.
- U-fit in "local" phase-space for given event. Signal/background shapes from sim. ⇒ data-driven.
- Event-wise weight for unbinned angular fits: $Q_i = \frac{S(U_i)}{S(U_i) + B(U_i)}$

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

Biplab Dey

BKGD SUBTRACTION VALIDATIONS

$\ell^- D$	decay mode	mode	$N_{\rm sig}$	$N_{\rm bkgd}$
$e^- D^0$	$K^{-}\pi^{+}$	0	539	63
	$K^{-}\pi^{+}\pi^{0}$	1	813	196
	$K^-\pi^+\pi^-\pi^+$	2	550	82
$e^- D^+$	$K^{-}\pi^{+}\pi^{+}$	3	721	41
	$K^{-}\pi^{+}\pi^{+}\pi^{0}$	4	204	120
$\mu^- \ D^0$	$K^{-}\pi^{+}$	5	433	64
	$K^-\pi^+\pi^0$	6	798	221
	$K^-\pi^+\pi^-\pi^+$	7	608	84
$\mu^- D^+$	$K^-\pi^+\pi^+$	8	665	55
	$K^-\pi^+\pi^+\pi^0$	9	233	134
		Total	5563	1061

- Lineshapes also depend on the reconstruction mode. 10 modes are treated independently.
- Unlike sWeights, tracks correlations between sig/bkgd lineshapes and phase-space.

• 1d projections, integrated over all 10 modes.

Sept 24, 2024

8 / 20

BKGD SUBTRACTION VALIDATIONS (CONTD.)

- Final *Q*-value fits done with signal/bkgd. shapes fixed from MC. Within statistics, seen to work quite well. Variations as systematic uncertainties.
- Comparison between final data and generic $B\overline{B}$ MC bkgd.:

- Fortunately the MC does a pretty good job in getting the shapes right.
- Detailed mode-by-mode fit validations in fine 1-d bins in $\{q^2, \cos \theta_\ell\}$ performed.

BGL FIT RESULTS

• BGL z-expansion fit to form-factors f_+ and f_0 (\rightarrow lattice, time-like)

$$f_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^N a_n^i z^n$$

- Unbinned non-extended ML 2d fits to BABAR + FNAL/MILC(Gaussian constraints). $d\Gamma/dq^2$ from Belle-16 optionally included.
- Independent $[-2\ln \mathcal{L}]_k$ from 10 modes summed at the end.

Effect of N = 3 BGL expansion

• From FF fits,
$$\Gamma' = \frac{\Gamma_{\text{tot}}^{\text{FF}}}{|V_{cb}|^2}$$
. $|V_{cb}| = \sqrt{\frac{\mathcal{B}}{\Gamma' \tau_B}}$ from updated HFLAV \mathcal{B} .

- For $B \to D$, mild effect of going from N = 2 to N = 3 BGL.
- Summer-23 tension in $R(D) \sim 2\sigma$.

Biplab Dey

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

Sept 24, 2024 11 / 20

Comment: low q^2 difficulty

- Clean, but very hard to get rid of the small remnant background in a data-driven fashion (no sidebands).
- In particular, for muon mode, $B \rightarrow D\pi$ shows up as peaking.
- Possible (Belle II) to PID-substitute $\mu \to \pi$ and kin. fit to nothing missing.
- Current BABAR analysis, we trim at $q^2 > 0.5$ GeV² to avoid this peaking component.

Comment: comparisons w/ lattice

• (Qualitatively) good agreement with flavor SU(3) in comparison with HPQCD.

- Also good agreement in the FF shape for f_+ , between BABAR-only and BABAR +FNAL/MILC fit.
- Full covariance matrices of BGL fits included in the PRD as supplementary material.

Biplab Dey

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

Sept 24, 2024 13 / 20

Comment: Exclusive $|V_{cb}|$ from $B \to D$

Measurement	$\mathcal{B}(\bar{B} \to D \ell^- \bar{\nu}_\ell) \times 10^2$	$ V_{cb} \times 10^3$	
BABAR-10 [14] BABAR-10 [14]	$\mathcal{B}_{B^0} = (2.15 \pm 0.11 \pm 0.14)$ $\mathcal{B}_{B^+} = (2.16 \pm 0.08 \pm 0.13)$	40.02 ± 1.76 38.67 ± 1.41	
Belle-16 [15]	$\mathcal{B}_{B^0} = (2.33 \pm 0.04 \pm 0.11)$ $\mathcal{B}_{A^0} = (2.46 \pm 0.04 \pm 0.12)$	41.66 ± 1.22 41.27 ± 1.23	

- This analysis relies on external BF input for the overall $|V_{cb}|$ normalization.
- Belle-16 systematically higher than BABAR-10
- Naively, $B \to D |V_{cb}|$ is closer to inclusive+in tension with $B \to D^*$, but this being driven by the Belle-16 input.
- Note: prelim. Belle II untagged $B \rightarrow D |V_{cb}| = (38.3 \pm 1.2) \times 10^{-3}$ (FPCP'23).

$B \to D^* \ell^- \overline{\nu}_\ell$

[PRL123,091801(2019) + 24XX.XXXX]

Recap of BABAR-19 $B \rightarrow D^*$ paper [prl123, 091801 (2019)]

- First full 4-d $\overline{B} \to D^* \ell^- \overline{\nu}_\ell$ angular analysis with hadronic tagging.
- As for $B \to D$, overall normalization from external BF.

- Extremely clean. Background subtraction from generic $B\overline{B}$ MC + systematic.
- ~ 6000 signal events. N = 2 (linear) BGL fit adequate. $|V_{cb}| = (38.36 \pm 0.90) \times 10^{-3}.$
- Negligible effect on extracted $|V_{cb}|$ between BGL and CLN FF parameterisations.

Sept 24, 2024 16 / 20

HQET FF'S AND THE RATIO OBSERVABLES

- H_{λ} amplitudes are written in terms of four form-factors.
- HQET: FF's only depend on w, the gamma-factor between B and recoiling D^* .

$$\begin{aligned} \frac{\langle D^*(v',\varepsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_Bm_{D^*}}} &= ih_V(w)\epsilon^{\mu\nu\alpha\beta}\varepsilon^*_{\nu}v'_{\alpha}v_{\beta} \\ \frac{\langle D^*(v',\varepsilon)|A^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_{D^*}}} &= h_{A_1}(w)(w+1)\varepsilon^{*\mu} - h_{A_2}(w)(\varepsilon^*\cdot v)v^{\mu} \\ - h_{A_3}(w)(\varepsilon^*\cdot v)v'^{\mu} \end{aligned} \qquad A_1 &= \frac{w+1}{2}r'h_{A_1} \\ A_2 &= \frac{rh_{A_2} + h_{A_3}}{r'} \equiv \frac{R_2h_{A_1}}{r'} \\ \frac{R_1h_{A_1}}{r'} \\ - \frac{R_1h_{A_1}}{r'} \end{aligned}$$

- HQS limit: $\{h_V, h_{A_1}, h_{A_3}\} \rightarrow \zeta(w)$ and $h_{A_2} \rightarrow 0$.
- The two ratio observables $R_{1,2}$ have reduced hadronic uncertainties.
- BGL basis $\{f_0, F_1, g, F_2\}$: rewrites h_{V,A_1,A_2,A_3} .
- Small RH admixture ϵ_R : add $(1 \pm \epsilon_R)$ factor for the vector (g) and axial-vector (f, F_1) FFs, respectively.

Biplab Dey

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

Sept 24, 2024 17 / 20

BABAR-19: CONUNDRUMS IN $R_{1,2}$

- Figure as is, from the *BABAR*-19 paper using BGL fits.
- "CLN-WA" used HFLAV16 numbers.
- CLN'97: original paper w/o uncertainties.
- $R_1(1)$ moved from 1.404 ± 0.032 (HFLAV16) to 1.269 ± 0.026 (HFLAV21, *BABAR*-19 not included). Almost 3.3σ change! Latest number is close to *BABAR*-19.
- HFLAV21 (excluding *BABA*R-19) quotes $R_2(1) \sim 0.85$.
- These are **BABAR**-only BGL. **BABAR** +lattice fits important.

Biplab Dey

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

Sept 24, 2024

ONGOING DEVELOPMENT AT BABAR

- New w > 1 lattice data: FNAL/MILC and JLQCD $(B \to D^*)$ and HPQCD $(B_{(s)} \to D^*_{(s)})$.
- Preliminary joint BABAR +lattice $B \to D^*$ fits were shown at ICHEP'22. Being finalized.
- Available unbinned $B \to D$ data being added to joint $B \to D^{(*)}$ BABAR +lattice HQET fits.
- Angular moments analysis of $\overline{B} \to \{D^*, \rho^0\} \ell^- \overline{\nu}_\ell$ in q^2 bins.

SUMMARY

- Hadronic tagged *BABAR* SL still a unique dataset. Excellent for unbinned full angular analyses.
- For $B \to D$: FF's seem quite stable and getting more precise. Normalization remains a concern.
- For $B \to D^*$: still much to understand about the FFs. Apparent $|V_{cb}|$ exclusive discrepancies among $B_{(s)} \to D_{(s)}^{(*)}$ concerning.