$\overline{B}_{(s)} \to D_{(s)}^{(*)}$ form factors at $\mathcal{O}(1/m_c^2)$

Nico Gubernari

Based on arXiv: 1908.09398, 1912.09335, 24xx.xxxx in collaboration with Marzia Bordone, Martin Jung, and Danny van Dyk Challenges in Semileptonic *B* Decays Campus Akademie, Vienna 23 September 2024

Introduction

Hadronic matrix elements

study *B*-meson decays to test the $b \rightarrow c\ell \nu$ transitions factorise decay amplitude (neglecting QED corrections)

$$\left\langle \overline{D}^{(*)} \ell \nu_{\ell} \middle| \mathcal{O}_{eff} \middle| B \right\rangle = \left\langle \ell \nu_{\ell} \middle| \mathcal{O}_{lep} \middle| 0 \right\rangle \left\langle D^{(*)} \middle| \mathcal{O}_{had} \middle| B \right\rangle$$

leptonic matrix elements: perturbative objects, high accuracy QED corrections mostly unknown but small (~1%)

 hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties (~10%)
⇒ biggest challenge for percent precision

calculate them using lattice QCD or light-cone sum rule

Definition of the form factors

decompose matrix elements in terms of form factors (FFs) (assume only Lorentz invariance)

$$\langle D(k) | \bar{c} \gamma_{\mu} b | B(q+k) \rangle = 2 k_{\mu} f_{+}(q^{2}) + q_{\mu} (f_{+}(q^{2}) + f_{-}(q^{2}))$$

$$\langle D(k) | \bar{c} \sigma_{\mu\nu} q^{\nu} b | B(q+k) \rangle = \frac{i f_T(q^2)}{m_B + m_P} (q^2 (2k+q)_{\mu} - (m_B^2 - m_P^2) q_{\mu})$$

FFs are functions of the momentum transfer squared q^2

number of independent vector (or tensor) FFs 2(+1) for $B \rightarrow D$ 4(+3) for $B \rightarrow D^*$ 4(+?) for $B^* \rightarrow D$ 10(+?) for $B^* \rightarrow D^*$

Heavy Quark Expansion (HQE)

use HQE: perform a power series expansion in $\Lambda_{\rm QCD}/m_c$ and $\Lambda_{\rm QCD}/m_b$ of FFs

$$\mathcal{F}_{\text{HQE}}^{i}(q^{2}) = \xi(q^{2}) \left(c_{0}^{i} + c_{1}^{i} \frac{\alpha_{s}}{\pi} \right) + c_{2}^{i} \frac{1}{m_{b}} L_{k}(q^{2}) + c_{3}^{i} \frac{1}{m_{c}} L_{k}(q^{2}) + c_{4}^{i} \frac{1}{m_{c}^{2}} l_{k}(q^{2}) \right)$$

all the $B^{(*)} \rightarrow D^{(*)}$ FFs can be expressed in terms of 10 Isgur-Wise functions (1 leading, 3 subleading, 6 subsubleading)

essential to include $\Lambda_{\rm QCD}^2/m_c^2$ corrections (CLN not sufficient) [Bordone/Jung/van Dyk 2019]

 \Rightarrow relations between $B^{(*)} \rightarrow D^{(*)}$ FFs

alternative method to include $1/m_c^2$ corrections proposed in Bernlochner F. et al. (2022) \Rightarrow fewer parameters but model dependence introduced

The importance of HQE

several (new) precise lattice QCD calculations available

- $B \rightarrow D$ at high q^2 [FNAL/MILC 2015] [HPQCD 2015]
- $B \rightarrow D^*$ at high q^2 [FNAL/MILC 2021] [JLQCD 2023] at any q^2 (in the physical region) [HPQCD 2023]

- $B_s \rightarrow D_s$ at any q^2 [HPQCD 2019]
- $B_s \rightarrow D_s^*$ at any q^2 [HPQCD 2021] [HPQCD 2023]

LCSRs available for the four processes at low q^2

using HQE is important because

- theoretical calculations must fulfil HQE relationships (within uncertainties)
- extract information about lesser-known form FFs (vector FFs ⇔ tensor FFs)
- apply strong unitarity bounds (not possible with a la BGL or similar parametrizations)

Our goal: a comprehensive HQE analysis

combine theoretical constraints in a HQE analysis of all $B^{(*)} \rightarrow D^{(*)}$ and $B_s^{(*)} \rightarrow D_s^{(*)}$ FFs include tensor FFs and corresponding strong bounds for the first time

steps to perform this analysis:

- 1. define the $B^* \rightarrow D^{(*)}$ HQE FFs
- 2. expand them in terms of Isgur-Wise functions at $\Lambda^2_{\rm QCD}/m_c^2$
- 3. define the $B^* \rightarrow D^{(*)}$ helicity FFs to write the unitarity bounds
- 4. relate HQE and helicity $B^* \rightarrow D^{(*)}$ FFs
- 5. fit the Isgur-Wise functions to the theoretical calculations and impose unitarity bounds

work in progress: all steps completed for $B^* \rightarrow D$, only step 1-3 completed for $B^* \rightarrow D^*$

Form factor definitions

HQE-like form factors definitions

 $B^{(*)} \rightarrow D^{(*)}$ matrix elements are functions of the momenta (or velocities) and polarizations vectors appearing in the process, e.g.

 $\langle D^*(\boldsymbol{\nu}',\boldsymbol{\eta}') \big| \bar{c} \, \Gamma_{\mu} b \big| B^*(\boldsymbol{\nu},\boldsymbol{\eta}) \rangle = g(\boldsymbol{\nu},\boldsymbol{\nu}',\boldsymbol{\eta},\boldsymbol{\eta}')$

factorize Lorentz structures and scalar functions of $w = v \cdot v' \propto q^2$

$$\left\langle D^*(\boldsymbol{\nu}',\boldsymbol{\eta}') \middle| \bar{c} \, \Gamma_{\mu} b \middle| B^*(\boldsymbol{\nu},\boldsymbol{\eta}) \right\rangle = \sum_i \mathcal{S}^i_{\mu}(\boldsymbol{\nu},\boldsymbol{\nu}',\boldsymbol{\eta},\boldsymbol{\eta}') \, \mathcal{F}^i_{\mathrm{HQE}}(\boldsymbol{w})$$

number of independent Lorentz structures \Rightarrow number of independent form factors

for $B^* \rightarrow D$ FFs similar definitions to $B \rightarrow D^*$ (use crossing symmetry) \implies 3 tensor FFs for $B^* \rightarrow D^*$ 7 tensor FFs

HQE form factors expansion

expand $B^{(*)} \rightarrow D^{(*)}$ FFs in terms of Isgur-Wise functions

$$\mathcal{F}_{\text{HQE}}^{i}(w) = \xi(w) \left(c_{0}^{i} + c_{1}^{i} \frac{\alpha_{s}}{\pi} \right) + c_{2}^{i} \frac{1}{m_{b}} L_{k}(w) + c_{3}^{i} \frac{1}{m_{c}} L_{k}(w) + c_{4}^{i} \frac{1}{m_{c}^{2}} l_{k}(w)$$

coefficients $c_i^{\mathcal{F}}$ depend on the form factor considered

(axial-)vector and tensor FFs depend on the same 10 Isgur-Wise functions

 $B_s^{(*)} \rightarrow D_s^{(*)}$ FFs have 10 different Isgur-Wise functions assume $SU(3)_F$ for subsubleading Isgur-Wise functions \implies 14 independent functions

$$\mathcal{F}_{\text{HQE}}^{i}(w) = \xi^{s}(w) \left(c_{0}^{i} + c_{1}^{i} \frac{\alpha_{s}}{\pi} \right) + c_{2}^{i} \frac{1}{m_{b}} L_{k}^{s}(w) + c_{3}^{i} \frac{1}{m_{c}} L_{k}^{s}(w) + c_{4}^{i} \frac{1}{m_{c}^{2}} l_{k}(w)$$

Helicity form factors

calculate helicity amplitudes

(polzation vectors for virtual W boson $\epsilon_{\lambda_{q'}} D^*$ meson $\eta'_{\lambda_{k'}} B^*$ meson η_{λ_p} , with $\lambda = 0, +, -, (t)$

 $\mathcal{A}_{\lambda_q}^{B \to D} \propto \epsilon_{\lambda_q}^{\mu*} \langle D(k) \big| \bar{c} \, \sigma_{\mu\nu} q^{\nu} b \big| B(p) \rangle$

$$\mathcal{A}_{\lambda_{q},\lambda_{k},\lambda_{p}}^{B^{*}\to D^{*}} \propto \epsilon_{\lambda_{q}}^{\mu*} \left\langle D^{*}(k,\eta_{\lambda_{k}}') \left| \bar{c} \,\sigma_{\mu\nu} q^{\nu} b \right| B^{*}(p,\eta_{\lambda_{p}}') \right\rangle$$

...

in general, one finds, e.g.,

$$\mathcal{A}^{B^* \to D^*}_{\lambda_q, \lambda_k, \lambda_p} \propto \sum_i h^i(m_{D^*}, m_{B^*}, q^2) \mathcal{F}^i(q^2)$$

helicity FFs are defined so that each helicity amplitude depends on only one FF (or vanish)

$$\mathcal{A}^{B^* \to D^*}_{\lambda_q, \lambda_k, \lambda_p} \propto g^i(m_{D^*}, m_{B^*}, q^2) \mathcal{F}^i_{\text{hel}}(q^2)$$

Properties of helicity FFs

unitarity bounds can only be applied (directly) to helicity FFs since

$$\left| \left\langle D^{(*)} \middle| \bar{c} \, \sigma_{\mu\nu} q^{\nu} b \middle| B^{(*)} \right\rangle \right|^2 \propto \sum_i \left| \mathcal{F}_{\text{hel}}^i \right|^2$$

however the definition of helicity FFs is not unique as $g^i(m_{D^*}, m_{B^*}, q^2)$ can be chosen arbitrarily

$$\mathcal{A}^{B^* \to D^*}_{\lambda_q, \lambda_k, \lambda_p} \propto g^i(m_{D^*}, m_{B^*}, q^2) \mathcal{F}^i_{\text{hel}}(q^2)$$

how to fix $g^i(m_{D^*}, m_{B^*}, q^2)$, a few tips

- keep $\mathcal{F}^i_{ ext{hel}}$ dimensionless
- avoid zeros and poles in the relations between $\mathcal{F}^i_{ ext{hel}}$ and $\mathcal{F}^i_{ ext{HQE}}$
- keep $\mathcal{F}^i_{ ext{hel}}$ positive

derive relations between \mathcal{F}_{hel}^i and \mathcal{F}_{HQE}^i for $B^{(*)} \to D^{(*)}$

HQE parametrization

BGL(-like) parametrization

define the map

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

for $B \rightarrow D^{(*)}$ it has been shown that a parametrization in the form

$$\mathcal{F}_{\text{hel}}^{i}(z) = \frac{1}{\mathcal{P}(z)\phi(z)} \sum_{n=0}^{\infty} \alpha_{n}^{i} z^{n}$$

 $(\mathcal{P}(z)\phi(z))$ are known functions) fulfils the unitarity bound [Boyd/Grinstein/Lebed 1997]

$\sum_{n=0}^{\infty} \left| a_n^i \right|^2 < 1$

extend approach to tensor $B^* \rightarrow D^{(*)}$ FFs

 \Rightarrow calculate outer functions for the new FFs (depend on the g^i functions)

HQE parametrization

expand Isgur-Wise functions around w = 1 (max recoil)

$$\xi(w) = \sum_{m=0}^{N} \frac{\xi^{(m)}}{m!} (w-1)^m \qquad L_k(w) = \sum_{n=0}^{M} \frac{L_k^{(m)}}{m!} (w-1)^m \qquad l_k(w) = \sum_{n=0}^{N} \frac{l_k^{(m)}}{m!} (w-1)^m$$

the derivatives $\xi^{(m)}$, $L_k^{(m)}$, $l_k^{(m)}$ are the parameters of our parametrization

N/M/K parametrization

3/2/1 parametrization is the minimal order to achieve a good description [Bordone/Jung/van Dyk 2019]

apply unitarity bounds

• change variable $w \rightarrow z(w)$ (use $t_0 = t_-$)

• write
$$\mathcal{F}_{ ext{HQE}}^i$$
 in terms of $\mathcal{F}_{ ext{hel}}^i$

• choose truncation order in z

$$z(w) = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

Weak and strong unitarity bounds

write the unitarity bound in terms of Isgur-Wise parameters

for one FF the bound reads

$$\sum_{n=0}^{\infty} \left| a_n^i \right|^2 \Longrightarrow \sum_{n=0}^{\infty} \left| a_n^i(\xi^{(m)}, L_k^{(m)}, l_k^{(m)}) \right|^2 < 1$$

sum contributions in the same channel (e.g. $B \rightarrow D^*$) with same $J^P \implies$ weak bound

sum contribution of all channels related by heavy quark symmetry $(B^{(*)} \rightarrow D^{(*)})$

More on unitarity bounds

the HQE strong unitarity bound have some crucial advantages

- include the contribution of $B^* \to D^{(*)}$ decays \Longrightarrow increase bound saturation not possible at the moment for BGL, as there are no $B^* \to D^{(*)}$ FFs predictions
- relate (axial-)vector and tensor FFs (constrain each other) not possible in BGL
- keep the number of fit parameters relatively low

other channels not related through HQE symmetry can be added \implies *ultra* strong unitarity bound

$$\underbrace{\sum_{\substack{\mathcal{F}^{i} \\ B^{(*)} \to D^{(*)}}}^{\infty} \left| a_{n}^{i}(\xi^{(m)}, L_{k}^{(m)}, l_{k}^{(m)}) \right|^{2}}_{B^{(*)} \to D^{(*)}} + \underbrace{\sum_{\substack{\mathcal{F}^{i} \\ B^{(*)} \to D^{(*)}}}^{\infty} \left| a_{n}^{i}(\xi^{s,(m)}, L_{k}^{s,(m)}, l_{k}^{s,(m)}) \right|^{2}}_{B_{s}^{(*)} \to D_{s}^{(*)}} + \underbrace{\sum_{\substack{\mathcal{F}^{i} \\ B^{(*)} \to D_{s}^{(*)}}}^{\infty} \left| a_{n}^{i}(\xi^{\Lambda,(m)}, L_{k}^{\Lambda,(m)}, l_{k}^{\Lambda,(m)}) \right|^{2}}_{\Lambda_{b} \to \Lambda_{c}} + \cdots < 1$$

Some (very) preliminary results

Preliminary HQE fit

perform fits using EOS software (nested sampling)

use HQE 3/2/1 model (include to $1/m_c^2$ corrections)

31 free parameters for $B_{(s)}^{(*)} \rightarrow D_{(s)}^{(*)}$ FFs

available theory constraints

- lattice QCD
- light-cone sum rules
- QCD sum rules for Isgur-Wise functions
- unitarity bounds

Preliminary HQE fit (FFs)

first attempt:

fit all available $B \rightarrow D^{(*)}$ FFs from LQCD $B \rightarrow D$: [FNAL/MILC 2015] [HPQCD 2015] $B \rightarrow D^*$: [FNAL/MILC 2021] [JLQCD 2023] [HPQCD 2023]

use unitarity bounds (tensor contribution not fully implemented)

obtain a **good fit** *p*-value ~ 50%

obtain $B \rightarrow D^{(*)}$ FFs predict physical observable

Preliminary HQE fit (bounds)

16

strong unitarity bound is (suspiciously) almost saturated by LQCD results. \Rightarrow essential for the analysis also observed by Martinelli et al.

unitarity bounds not only control the truncation error but also check the consistency of LQCD results

Summary and outlook

Summary and outlook

HQE pheno analyses are important for the interpretation of FFs calculations and measurements \Rightarrow obtain complementary information

strong unitarity bounds fully exploit the theoretical constraints obtain relations and information on lesser-known FFs

 \Rightarrow new bounds on the $B^* \rightarrow D^{(*)}$ tensor FFs will improve our knowledge of other FFs

define the $B^* \rightarrow D^*$ helicity FFs and relate them to the HQE FFs

perform fits using different sets of theoretical constraints

