Opportunities with b-baryons at LHCb

Anna Lupato

Challenges in Semileptonic Decays

Campus Akademie, Vienna (Austria) 23-27 September 2024

Istituto Nazionale di Fisica Nucleare Sezione di Padova

- Mesonic decays well studied at B-factories
- Unique capability with baryonic decays at LHC
 - Copious amount of $\Lambda_{_{\rm b}}$ at LHCb (~ 40% of b-hadron produced at LHCb are $\Lambda_{_{\rm b}}$ baryons)
- Compared to b-meson decays allows us to probe different spin dynamics (e.g. particularly sensitive to tensor NP currents) [PRD 99 (2019) 055008, JHEP 08 (2017) 131]

- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \nu$ with $\tau \rightarrow \pi\pi\pi(\pi)\nu$ [Phys. Rev. Lett. 128 (2022) 191803]
- $d\Gamma/dq^2$ measurement of $\Lambda^{0}_{b} \rightarrow \Lambda_{c}^{+} \mu \nu$ [Phys. Rev. D 96 (2017) 112005]
- Fragmentation fractions of Λ^{0}_{b} [Phys. Rev. D 100 (2019) 031102(R)]

- Angular analysis of $\Lambda^{0}{}_{\rm b} \to \Lambda_{\rm c}{}^{+}\,\mu\nu$
- Form factor measurement in $\Lambda^{0}{}_{\rm b} \,{\rightarrow}\, \Lambda_{\rm c}{}^{*}\,\mu\nu$
- Determination of $R(\Lambda_c)$ via $\tau \rightarrow \mu \nu \nu$

- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \nu$ with $\tau \rightarrow \pi \pi \pi (\pi) \nu$ [Phys. Rev. Lett. 128 (2022) 191803]
- $d\Gamma/dq^2$ measurement of $\Lambda^{0}_{b} \rightarrow \Lambda_{c}^{+} \mu\nu$ [Phys. Rev. D 96 (2017) 112005]
- Fragmentation fractions of Λ^{0}_{b} [Phys. Rev. D 100 (2019) 031102(R)]

- Angular analysis of $\Lambda^{0}{}_{\rm b}\,{\rightarrow}\,\Lambda_{\rm c}{}^{+}\,\mu\nu$
- Form factor measurement in $\Lambda^{0}{}_{\rm b} \to \Lambda_{\rm c}{}^{*}\,\mu\nu$
- Determination of $R(\Lambda_c)$ via $\tau \rightarrow \mu \nu \nu$

$R(\Lambda_{\rm b})$ measurement

[Phys. Rev. Lett. 128 (2022) 191803]

- First LFU test in a baryonic $b \rightarrow c l \nu \; decay$
- Initial state spin $1/2 \Rightarrow$ could couple to different physics beyond SM
- Three-prong hadronic decays $\tau \rightarrow \pi\pi\pi(\pi^0)\nu$
- Dataset: run1 LHCb data

[Phys. Rev. Lett. 128 (2022) 191803]

- Tight Λ_{c}^{+} particle identification selection.
- $\Lambda_{\rm c}{}^{\scriptscriptstyle +}$ sideband template used in the signal fit to remove the background under the peak
- Combine with detached $\pi\pi\pi$ triplet forming τ candidates
- Reconstruct decay kinematics
- Prompt background rejection thanks to vertex topology
 - $\Lambda^0{}_b \rightarrow \Lambda_c{}^+ \pi \pi \pi X$
 - Suppressed by requiring the $\boldsymbol{\tau}$
 - vertex to be downstream wrt $\Lambda^{0}{}_{\rm b}$ vertex along beam direction with a 5σ significance

 $\Delta z = z(3\pi) - z(\Lambda_c) > 5 \sigma_{vtx}$

$R(\Lambda_{b})$ measurement

[Phys. Rev. Lett. 128 (2022) 191803]

- $\Lambda^{0}{}_{b} \rightarrow \Lambda_{c}^{+} D_{s} (\rightarrow \pi \pi \pi X)$
 - Suppressed using a BDT:
 - exploit τ decay dynamics and taking into account the resonant structure of the 3π system
 - the energy carried by neutral particles within the cone around the 3π direction
 - kinematic variables from partial reconstruction
 - Validated on with control samples: $\Lambda^0{}_b \rightarrow \Lambda_c{}^+ \pi\pi\pi$, $\Lambda^0{}_b \rightarrow \Lambda_c{}^+ D^-(X)$, $\Lambda^0{}_b \rightarrow \Lambda_c{}^+ D^0bar(X)$

• Exclusive $\Lambda^0{}_b \to \Lambda_c{}^+ D_s (\to \pi\pi\pi X)$ control sample to constrain the double charm decays

$R(\Lambda_{\rm h})$ measurement

[Phys. Rev. Lett. 128 (2022) 191803]

• $\Lambda^0{}_b \rightarrow \Lambda_c{}^+ \pi \pi \pi$ yield extracted from fit to the invariant mass

- Signal yield extrated from fit to
 - **q**²
 - τ decay time
 - Isolation BDT output

- First observation of the mode $\Lambda^{0}{}_{\rm b}\to\Lambda_{\rm c}{}^{+}\,\tau^{-}\nu$ with a 6σ significance

[Phys. Rev. Lett. 128 (2022) 191803]

- $\mathscr{K}(\Lambda_c) = 2.46 \pm 0.27(\text{stat}) \pm 0.40(\text{syst})$
- Dominant source of systematic uncertainty is double charm background template shapes $\delta \mathcal{K}(\Lambda_c^+)/\mathcal{K}(\Lambda_c^+)[\%]$

Source	$\delta \mathcal{K}(\Lambda_c^+)/\mathcal{K}(\Lambda_c^+)[\%]$
Simulated sample size	3.8
Fit bias	3.9
Signal modelling	2.0
$\Lambda_b^0 \to \Lambda_c^{*+} \tau^- \overline{\nu}_{\tau}$ feeddown	2.5
$D_s^- \to 3\pi Y$ decay model	2.5
$\Lambda_b^0 \to \Lambda_c^+ D_s^- X, \Lambda_b^0 \to \Lambda_c^+ D^- X, \Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 X$ background	4.7
Combinatorial background	0.5
Particle identification and trigger corrections	1.5
Isolation BDT classifier and vertex selection requirements	4.5
D_s^- , D^- , $\overline{D}^0~$ template shapes	13.0
Efficiency ratio	2.8
Normalisation channel efficiency (modelling of $\Lambda_b^0 \to \Lambda_c^+ 3\pi$)	3.0
Total uncertainty	16.5

• $\mathscr{B}(\Lambda_b^0 \to \Lambda_c \tau^- \overline{\nu}_{\tau}) = (1.50 \pm 0.16(\text{stat}) \pm 0.25(\text{syst}) \pm 0.23(\text{ext}))\%$

 $\Re(\Lambda_c) = 0.242 \pm 0.026(\text{stat}) \pm 0.040(\text{syst}) \pm 0.059(\text{ext})$

- In agreement with SM prediction within 1σ

- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \nu$ with $\tau \rightarrow \pi \pi \pi (\pi) \nu$ [Phys. Rev. Lett. 128 (2022) 191803]
- $d\Gamma/dq^2$ measurement of $\Lambda^{0}_{b} \rightarrow \Lambda_{c}^{+} \mu\nu$ [Phys. Rev. D 96 (2017) 112005]
- Fragmentation fractions of Λ^{0}_{b} [Phys. Rev. D 100 (2019) 031102(R)]

- Angular analysis of $\Lambda^{0}{}_{\rm b}\,{\rightarrow}\,\Lambda_{\rm c}{}^{+}\,\mu\nu$
- Form factor measurement in $\Lambda^{0}{}_{\rm b} \,{\rightarrow}\, \Lambda_{\rm c}{}^{*}\,\mu\nu$
- Determination of $R(\Lambda_c)$ via $\tau \rightarrow \mu \nu \nu$

- Differential distributions key for comparisons with Heavy Quark Effective Theory and Lattice QCD
- Necessary to measure CKM parameters ($|V_{cb}|$ in overall factor G)
- Measure form-factors as one Isgur-Wise function $\xi(w)$

$$w = \frac{m_{\Lambda_b^0}^2 + m_{\Lambda_c^+}^2 - q^2}{2m_{\Lambda_b^0}m_{\Lambda_c^+}}$$

• In the static approximation the differential decay with is given by

$$\frac{d\Gamma}{dw} = GK(w)\xi_B^2(w)$$

• Considering the non perturbative correction to the static limit:

$$\xi_B(w) = 1 - \rho^2(w-1) + \frac{1}{2}\sigma^2(w-1)^2 + \dots$$

- Dataset: run1 LHCb data
- Inclusive $\Lambda^{0}{}_{b} \to \Lambda_{c}{}^{+}\,\mu\nu X$ with $~\Lambda_{c}{}^{+} \to pK\pi$
- Excited state are backgrounds to ground state decay

• 2D fit to the $m(pK\pi)$ and ln(IP/mm)

Form Factor measurements

LHCb

[Phys. Rev. D 100 (2019) 031102(R)]

8000

6000

(a)

- The raw spectrum is unfolded for:
 - detector resolution
 - w smeraring effects
 - Single value decomposition •
- Correct for acceptance and efficiency
- Unfold also for q²

 $dN_{\rm corr} / dq^2 \, [{\rm GeV}^2]$

Ongoing studies with normalization channel to extract |Vcb|

- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \nu$ with $\tau \rightarrow \pi \pi \pi (\pi) \nu$ [Phys. Rev. Lett. 128 (2022) 191803]
- $d\Gamma/dq^2$ measurement of $\Lambda^{0}_{b} \rightarrow \Lambda_{c}^{+} \mu\nu$ [Phys. Rev. D 96 (2017) 112005]
- Fragmentation fractions of Λ^{0}_{b} [Phys. Rev. D 100 (2019) 031102(R)]

- Angular analysis of $\Lambda^{0}{}_{\rm b}\,{\rightarrow}\,\Lambda_{\rm c}{}^{+}\,\mu\nu$
- Form factor measurement in $\Lambda^{0}{}_{\rm b} \,{\rightarrow}\, \Lambda_{\rm c}{}^{*}\,\mu\nu$
- Determination of $R(\Lambda_c)$ via $\tau \rightarrow \mu \nu \nu$

- Knowledge of b-hadron fragmentation fractions is essential in many aspects:
 - To allow for relating the pp production cross-section from pQCD to the observed hadrons
 - To convert the observed B_s and $\Lambda^{0}{}_{\rm b}$ production ratios at the LHC into absolute branching fractions
 - To characterize the signal (background) composition in inclusive (exclusive) bhadron analyses
- These fractions must be determined experimentally because they are driven by strong dynamics in the non-perturbative regime.

b-hadron fractions measurement @13 TeV

[Phys. Rev. D 100 (2019) 031102(R)]

• The measured ratios are:

$$\frac{f_s}{f_u + f_d} \quad \begin{array}{c} f_{\Lambda_b^0} \\ \hline f_u + f_d \end{array} \quad \begin{array}{c} f_q \equiv \mathcal{B}(b \to B_q) \\ f_{\Lambda_b} \equiv \mathcal{B}(b \to \Lambda_b) \end{array}$$

- Data sample: 1.67 fb⁻¹ (2016)
- Inclusive semileptonic decays: $H_b \rightarrow H_c X \mu \nu$
- Theoretical basis: Semileptonic widths for all b hadrons are almost equal [I.Bigi et al., JHEP 09 (2011) 012] $\rightarrow G_{SL}$ (H_b) = G_{SL}
 - Differences predicted to be around 1% (HQE)

 \rightarrow we can use the measured lifetime to relate measured yield to hadron fragmentation.

b-hadron fractions measurement @13 TeV

[Phys. Rev. D 100 (2019) 031102(R)]

$$\begin{split} n_{\rm corr}(B \to D^0 \mu^-) &= \frac{1}{\mathcal{B}(D^0 \to K^- \pi^+)\epsilon(B \to D^0)} \times \\ & \begin{bmatrix} n(D^0 \mu) - n(D^0 K^+ \mu^-) \frac{\epsilon(\overline{B}^0_s \to D^0)}{\epsilon(\overline{B}^0_s \to D^0 K^+)} - n(D^0 p \mu^-) \frac{\epsilon(\Lambda^0_b \to D^0)}{\epsilon(\Lambda^0_b \to D^0 p)} \end{bmatrix} \\ & \text{Inclusive yield Subtracted yield Subtracted yield Subtracted yield} \\ \bullet & \mathsf{D}^0 \mathsf{h} \mathsf{X} \mathsf{\mu} \mathsf{v} \text{ are signal for } \mathsf{B}_s \mathsf{and } \Lambda_\mathsf{b} \text{ and background for } \mathsf{B}^0 \text{ and } \mathsf{B}^- \end{split}$$

- 2D Fit to
 - m(D⁰h) m(D⁰) m(D⁰)_{pdg} (h=K,p)
 - In($\Delta\chi^2_v$): logarithm of the vertex χ^2 difference between Dhµ and Dµ

 Fit to data: linear χ² fit to p_T (charm+µ) distributions incorporating a full covariance matrix, which takes into account correlation introduced from the kaon kinematics, PID and tracking systematic uncertainties.

• Averages fractions integrated between the limits $4 < p_T$ (charm+ μ)<25 GeV and 2< η <5

$$\frac{f_s}{f_u + f_d} = 0.122 \pm 0.006 \qquad \qquad \frac{f_{A_b^0}}{f_u + f_d} = 0.259 \pm 0.018$$

- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \nu$ with $\tau \rightarrow \pi \pi \pi (\pi) \nu$ [Phys. Rev. Lett. 128 (2022) 191803]
- $d\Gamma/dq^2$ measurement of $\Lambda^0{}_b \rightarrow \Lambda_c{}^+ \mu\nu$ [Phys. Rev. D 96 (2017) 112005]
- Fragmentation fractions of Λ^{0}_{b} [Phys. Rev. D 100 (2019) 031102(R)]

- Angular analysis of $\Lambda^{0}{}_{\rm b} \to \Lambda_{\rm c}{}^{+}\,\mu\nu$
- Form factor measurement in $\Lambda^{0}{}_{\rm b} \to \Lambda_{\rm c}{}^{*}\,\mu\nu$
- Determination of $R(\Lambda_c)$ via $\tau \rightarrow \mu \nu \nu$

Angular analysis of $\Lambda^{0}{}_{b} \rightarrow \Lambda_{c}{}^{+}\,\mu\nu$

- Search for new physics in $\Lambda^{0}{}_{\mathrm{b}}$ decays
- Goal of the analysis: probing the UV dynamics of the SM-WET, by measuring the Wilson Coefficients (WC) $c_{\rm i}$

• By measuring the decay rate in we can access the Wilson Coefficients and the hadronic Form Factors $\frac{1}{1} = \frac{d^2N}{d^2N}$

$$\frac{1}{N} \frac{d^2 N}{dq^2 d \cos \theta_{\mu}} \propto \sum_i c_i(\Lambda) f_i(q^2)$$

• Target: winter conferences

$\Lambda^{0}_{b} \rightarrow \Lambda_{c}^{+} \mu \nu$ form factors

Pulls

- Perform the $\Lambda^{0}_{b} \rightarrow \Lambda_{c}^{+} \mu \nu$ form factors measurement from the double differential decay rate with respect to q and $\cos(\theta\mu)$
- The goal is to publish the result from the folded fit and the

LHCb preliminary

 $\frac{BR(\Lambda_b \to \Lambda_c^+(2595)\mu\nu)}{BR(\Lambda_b \to \Lambda_c^+(2625)\mu\nu)}$

- Semileptonic *b*-hadron decays are excellent opportunites to check the SM and look for new phyisics
- Broad SL physics program at LHCb: measurement of CKM matrix elements, angular analysis, Wilson coefficients, LFU tests...
- Successful Run1 and Run2: 3+6 fb⁻¹, still many analysis ongoing
- Upgrade Phase I:10 times more data (20 times more hadronic events)
 → larger control samples and improved model descriptions will help to
 control systematic uncertainties

Thank you for your attention!

