

A novel analysis of $B \rightarrow D\ell\nu$ and $B \rightarrow D^*\ell\nu$ decays at Belle II

Michele Mantovano (University and INFN Trieste) on behalf of the Belle II Collaboration

> Challenges in Semileptonic B decays Vienna, Sept 24, 2024

Overview

I will show 3 different approaches to measure $|V_{cb}|$, form factors and branching fractions using exclusive *B* decays at Belle II:

1. $B^0 \to D^{*-} \ell^+ \nu$ analysis with 189 fb^{-1} [<u>PRD 108, 092013 (2023)</u>].

- 2. $B \rightarrow D\ell\nu$ analysis: preliminary result with 189 fb^{-1} [arXiv: 2210.13143]. Update to 362 fb^{-1} ongoing.
- 3. New global analysis of $B \to D^* \ell \nu$ and $B \to D \ell \nu$ decays: a study with simulation for an ongoing analysis.

Dealing with missing energy

All analyses covered here are UNTAGGED:

- No systematic related to B tagging efficiency, important for BR and $|V_{cb}|$.
- High efficiency compensate for low resolution of approximated B kinematics.
- No discriminating B peak for signal.
 - Leverage M(D) and $\Delta M = M(D^*) M(D)$ narrow peaks.
 - Use available kinematic constraint:

$$cos\theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

$B \rightarrow D^* \ell \nu$ measurement

[PRD 108, 092013 (2023), $189 f b^{-1}$]

In a nutshell

Rich phenomenology due to different decay amplitudes encoded in angular distributions.

Reconstruct $B^0 \to D^{*+} \ell^- \nu$, with $D^{*+} \to D^0 [\to K^- \pi^+] \pi^+_{soft}$.

Reconstruct the kinematic variables: w and 3 helicity angles, $cos\theta_{\ell}$, $cos\theta_{\nu}$ and χ .

Extract the signal yields with fit to $cos\theta_{BY}$ and ΔM in bins of w, $cos\theta_{\ell}$, $cos\theta_{v}$ and χ , to reconstruct 1D signal distributions.

$$w = E_{D^*}/M_D^*$$

Unfold the reconstructed distributions from experimental effects (efficiencies and resolutions).

Unfolded distributions

Fit the unfolded distributions with different form-factor model to obtain $|V_{cb}|$.

Results

 $\begin{aligned} \mathscr{B}(\bar{B}^{0} \to D^{*+}\ell^{-}\bar{\nu}_{\ell}) &: (4.922 \pm 0.023(stat) \pm 0.220(syst)) \% \\ \text{Compatible with the current WA: } (4.97 \pm 0.12) \% \\ \left| V_{cb} \right|_{BGL} &= (40.57 \pm 0.31(stat) \pm 0.95(syst) \pm 0.58(th)) \cdot 10^{-3} \\ \text{Compatible with the exclusive (inclusive) WA: } 1.5\sigma (1.3\sigma) \\ \left| V_{cb} \right|_{CLN} &= (40.13 \pm 0.27(stat) \pm 0.93(syst) \pm 0.58(th)) \cdot 10^{-3} \\ \text{Compatible with the exclusive (inclusive) WA: } 1.1\sigma (1.6\sigma) \end{aligned}$

LFU test by comparing separated results for electrons and muons:

Use FNAL/MILC lattice QCD data at zero recoil (w = 1) for normalisation. BGL truncated using nested hypothesis test: BGL(1,2,2).

 $R_{e/\mu} = 0.998 \pm 0.009(stat) \pm 0.020(syst)$

 $\Delta A_{FB} = (-17 \pm 16(stat) \pm 16(syst)) \cdot 10^{-3}$

 $\Delta F_L = (0.006 \pm 0.007(stat) \pm 0.005(syst)) \cdot 10^{-3}$

Dominant systematic sources:

1) slow-pion reconstruction efficiency \rightarrow 1.5% on $|V_{cb}|$

$$2)f_{+0} = \frac{\mathscr{B}(\Upsilon(4S) \to B^+B^-)}{\mathscr{B}(\Upsilon(4S) \to B^0\bar{B}^0)} \to 1.3\% \text{ on } |V_{cb}|$$

No deviations observed from the SM.

$B \rightarrow D\ell\nu$ measurement

[arXiv: 2210.13143, 189 fb^{-1}]

Preliminary results

More simpler on theoretical side: only 1 form factor (massless limit).

Reconstruct both B^0 and B^+ decays from $D^0 \to K\pi$ and $D^- \to K\pi\pi$ final states.

Exploit isospin symmetry to analyse B^0 and B^+ decays simultaneously and reduce experimental uncertainties.

Extract signal yields from fit to the $cos\theta_{BY}$ in 10 bins of w.

Unfold the reconstructed *w* distribution of the signal.

Preliminary result

 $|V_{cb}|_{BGL} = (38.28 \pm 1.16) \cdot 10^{-3}$

Obtain a total uncertainty on $|V_{cb}|$ of ~ 3%.

Update to $362 fb^{-1}$ ongoing

An analysis on the full data set collected by Belle II between 2019 and 2022 is ongoing. Improved selection and better control of systematic uncertainties:

	$ V_{cb,BGL} $ [%]	$ V_{cb,BCL} $ [%]
Stat. Error	0.7	0.6
MC Stat. Error	0.4	0.3
N_{bb}	0.8	0.8
f_{00}/f_{+-}	< 0.1	< 0.1
$\mathcal{B}(D \to K\pi(\pi))$	0.4	0.4
Selection	0.2	0.2
$\mathcal{B}(B o X_c \ell u)$	0.2	0.1
LeptonID	0.1	0.1
KaonID	0.4	0.4
Tracking efficiency	0.5	0.5
$B \to D \ell \nu_{\ell}$ form factor	0.8	0.4
$B \to D^* \ell \nu_\ell$ form factor	0.1	0.1
$\cos\theta_{BY}$ background modelling	0.2	0.2
w background modelling	0.5	0.4
$ au_{B^{0/\pm}}$	0.1	0.1
Total systematic	1.5	1.4
Theory <u>PRD 79, 013008</u> , <u>PRD 93, 7</u>	<u>119906</u> 1.3	1.2
Total	2.1	1.9

The uncertainty on f_{+-}/f_{00} cancel out by assuming isospin symmetry between B^0 and B^+ samples.

Theory contribution: lattice point at non-zero recoil lattice QCD calculations.

Expected competitive result on $|V_{cb}|$ with a total uncertainty of ~ 2%.

Expected also competitive result on the branching-fraction measurements.

Can we combine them? A global analysis of $B \to D^* \ell \nu$ and $B \to D \ell \nu$ decays

New approach

The $B \rightarrow D\ell\nu$ sample features a large feed-down contribution from $B \rightarrow D^*\ell\nu$ decays,

usually treated as a background.

Can we analyse $B \to D^* \ell \nu$ and $B \to D \ell \nu$ together?

[inspired by a BaBar analysis from 2008 (PRD 79, 012002)]

Simultaneous analysis at Belle II

- By reconstructing $D\ell\nu$ final states, perform a simultaneous analysis of $B \to D\ell\nu$ and \bigcirc
 - $B \rightarrow D^* \ell \nu$ where D^* is partially reconstructed:
 - 1. Get rid of major systematic uncertainty on $B \rightarrow D^* \ell \nu$ analysis (slow pion efficiency).

2. Analyse both B^0 and B^+ decays. Can exploit isospin symmetry to:

- reduce total uncertainty budget
- determine also f_{+-}/f_{00}

at the cost of an uncertainty on isospin breaking (Coulomb factor*).

An alternative approach to the ongoing measurements, affected by different sources of systematic uncertainties.

Coulomb factor: difference between B^0 and B^+ decays due to possible QED interactions in $D^{-}\ell^+$ and not in $D^{*0}\ell^+$. Contribute a (conservative) uncertainty of ~ 1% on the BR.

Model-independent observables

Measure observables that allow interpretation of results with any form-factor model.

 $D\ell\nu$, measure the differential rate as a function of w:

$$\frac{d\Gamma}{dw} \propto \Gamma_0(w) |V_{cb}|^2 |G(w)|^2$$

G'(w), measured in 7 bins of w

 $D^* \ell \nu$, measure the squared helicity amplitudes as a function of w:

$$\frac{d^{2}\Gamma}{dwdcos\theta_{\ell}} \propto \Gamma_{0}(w) |V_{cb}|^{2} \left\{ \begin{array}{l} H_{+}^{2}(w) + H_{-}^{2}(w) + 2H_{0}^{2}(w) \\ \hline H_{+}^{2}(w) + H_{-}^{2}(w) + 2H_{0}^{2}(w) \\ \hline H_{+}^{2}(w) - H_{+}^{2}(w) \end{bmatrix} cos\theta_{\ell} \\ \hline c(w) \\ + \left[H_{+}^{2}(w) + H_{-}^{2}(w) - 2H_{0}^{2}(w)\right] cos^{2}\theta_{\ell} \right\}$$

a'(w), b'(w), c'(w), measured in 5 bins of w

Results from these observables

From the measured values of G', a', b', c' in bins of w, can determine:

1. $\mathscr{B}(B \to D\ell\nu)$, $\mathscr{B}(B \to D^*\ell\nu)$ and their ratio.

2. $|V_{cb}|$ and form factors: $f_+(w)$ for $D\ell\nu$ and f(w), g(w), $\mathcal{F}_1(w)$ for $D^*\ell\nu$.

Can use any model and reinterpret the measurement using any theoretical advancement.

3. Forward-backward asymmetry A_{FB} and longitudinal polarisation $F_L^{D^*}$ in bins of w:

$$A_{FB}(w) = \frac{3b'(w)}{6a'(w) + 2c'(w)} \qquad \qquad F_L^{D^*}(w) = \frac{a'(w) - c'(w)}{3a'(w) + c'(w)}$$

Can also do measurements separately for electrons and muons to test LFU.

How?

- p_D^* , momentum of the D in the CMS, encapsulates w for both $D\ell\nu$ and $D^*\ell\nu$.
- p_{ℓ}^* , momentum of the lepton in the CMS, encapsulates $cos\theta_{\ell}$ for $D^*\ell\nu$.
- Their 2D distribution is highly sensitive to the $D\ell \nu$ and $D^*\ell \nu$ differential decay rates.

Analysis strategy

Reconstruct both electron and muon samples.

Tight selection to have clean samples. Minimise uncertainties from background.

Sample composition

Study in detail all possible sources of background and categorise them in components for the fit.

Measurement of model-independent observables

Make a 3D χ^2 fit using p_D^* and p_ℓ^* to access the differential decay rate, and $cos\theta_{BY}$ to enhance signal-to-bkg separation. Assess systematic uncertainties.

Interpretation of the measurement

Determine BR, $|V_{cb}|$, form factors, A_{FB} and $F_L^{D^*}$ from the measured values of G', a', b', c' and their covariance.

Full analysis tested with realistic Belle II simulation of $362 fb^{-1}$ sample.

Selection

- Three or four tracks of good quality. Apply leptonID and KaonID.
- Suppress continuum with total energy in the event, shape variables and kinematic bounds.
- Minimum thresholds on momentum for leptons and D mesons.
- Tight cut around narrow D mesons peaks.

Similar proportion for the muon samples.

Sample composition

6. Real D: real D + lepton (real or fake)

5. $B \to X \ell \nu$ + gap modes, where X is D^{**} (include also $D^{(*(*))} \tau \nu$) Constrained from data using a control region

Most of the B-hadronic decays unknown. Take into account as systematics uncertainty.

Fit configuration

- Fit 3D data distribution of $(cos\theta_{BY}, p_{\ell}^*, p_D^*)$ using templates from simulation or data sideband.
- Signal templates and yields depend on the parameters G', a', b', c'.
- Assume isospin symmetry: G', a', b', c' parameters in common between B^0 and B^+ decays.
- Total of 37 physics parameters:
 - 22 for signal (model-independent observables)

 f_{+-}/f_{00}

- 14 parameters for the background modelling
- Fit simultaneously electron and muon samples.
- Fit simultaneously to a control region to constrain D^{**} backgrounds.

Projections: signal region

21

Model-independent observables

Dominant uncertainties correlated through the bins as they concern the normalisation (e.g.BB pairs). 22

BR and f_{+-}/f_{00} expected uncertainties

Measure the $\mathscr{B}(B \to D\ell\nu)$ and $\mathscr{B}(B \to D^*\ell\nu)$ by integrating over all the *w* range the differential

branching fractions obtained from our model-independent observables in each w bins.

	Relative uncertainties [%] on $\mathscr{B}(B o D \mathscr{C} \nu)$	Relative uncertainties [%] on $\mathscr{B}(B o D^* \mathscr{C} u)$	Relative uncertainties [%] on $f_{+-}/\!f_{00}$	
NBB	1.5	1.5	< 0.1	
BR(D decays)	1.0	0.7	1.9	
Lifetime ratio	0.2	0.2	0.4	
track efficiency	0.8	0.8	0.2	
BR(D** + gap)	1.3	1.2	1.1	
Backgrounds modelling	0.6	0.3	1.0	
MC stat	0.1	0.1 0.1		
Coulomb factor (th. unc.)	b factor (th. unc.) 1.0 1.1		2.3	
TOTAL SYST	2.0 (syst) + 1.0 (th.)	1.9 (syst) + 1.1 (th.)	2.0 (syst) + 2.3 (th.)	
Stat	0.3	0.2	0.3	

BR and f_{+-}/f_{00} expected uncertainties

Compare the uncertainties of $\mathscr{B}(B \to D\ell\nu)$, $\mathscr{B}(B \to D^*\ell\nu)$ and f_{+-}/f_{00} with the best measurements.

	Expected results	Best measurements
$\mathcal{B}(B^- \to D^0 \ell \nu)$	$(XXX \pm 0.01(stat) \pm 0.05(syst) \pm 0.02(th)) \cdot 10^{-2}$	BaBar $(2.34 \pm 0.03(stat) \pm 0.13(syst)) \cdot 10^{-2}$ Phys.Rev.D 79 (2009) 012002
$\mathscr{B}(B^- \to D^{*0} \ell \nu)$	$(XXX \pm 0.01(stat) \pm 0.11(syst) \pm 0.06(th)) \cdot 10^{-2}$	BaBar $(5.40 \pm 0.02(stat) \pm 0.21(syst)) \cdot 10^{-2}$ Phys.Rev.D 79 (2009) 012002
f_{+-}/f_{00}	$XXX \pm 0.003(stat) \pm 0.021(syst) \pm 0.024(th)$	Belle $1.065 \pm 0.012(stat) \pm 0.019(syst) \pm 0.047(th)$ Phys. Rev. D 107, L031102

Th. uncertainty from Coulomb factor.

Measurements competitive with the world's best.

FF and $|V_{cb}|$

Fit a-posteriori the model-independent observables with BGL at order 1 as an example.

Use only lattice points at w = 1 $G(1): 1.029 \pm 0.009$ for $D\ell\nu$ $h_{A_1}(1): 0.904 \pm 0.013$ for $D^*\ell\nu$.

	Generator values	Fit a-posteriori	
a_1	-0.094	-0.0940 +- 0.0005	
a_0^g	0.02596	0.02596 +- 0.00049	
a_1^g	-0.06049	-0.06053 +- 0.01635	
a_1^f	0.01713	0.01713 +- 0.00461	
a_1^F	0.00753	0.00753 +- 0.00017	
<i>G</i> (1)	1.029 +- 0.009	1.029 +- 0.008	
$h_{A_1}(1)$	0.904 +- 0.013	0.904 +- 0.007	
$ V_{cb} [10^{-3}]$	38.72	38.72 +- 0.3	

Obtain the same generator values. Data can provide information on $h_{A_1}(1)$.

Bonus

Simultaneous analysis of $D\ell\nu$ and $D^*\ell\nu$, data provides information to improve $h_{A_1}(1)$.

Try to fit model-independent observables by Gaussian constraining only G(1).

			Belle II simulation
	Generator values	Fit a-posteriori	$\sum_{\nu=1}^{3.5-} = \frac{1}{1\sigma} Fit BGL D \ell \nu$
a_1	-0.094	-0.0940 +- 0.0005	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
a_0^g	0.02596	0.02596 +- 0.00050	
a_1^g	-0.06049	-0.06053 +- 0.01652	5 ^{1.0} 0.5
a_1^f	0.01713	0.01713 +- 0.00463	0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 W 6
a_1^F	0.00753	0.00753 +- 0.00017	$D^* \ell \nu$
<i>G</i> (1)	1.029 +- 0.009	1.029 +- 0.009	$\mathbf{I}_{\mathbf{I}} = \mathbf{I}_{\mathbf{I}} $
$h_{A_1}(1)$	0.904 +- 0.013	0.904 +- 0.009	$ \begin{array}{c} $
$ V_{cb} [10^{-3}]$	38.72	38.72 +- 0.4	o- Jo Data
			1.0 1.1 1.2 1.3 1.4 1.5 W

Can measure FF w/o assuming any lattice inputs for $D^* \ell \nu$ with a small impact on V_{cb} .

Expected uncertainties on FF and $\mid V_{cb} \mid$

	Rel. unc. [%] on		Uncer	tainty [10^{-2}] on		
	$ V_{cb} $	a_1	a_0^g	a_1^g	a_1^f	a_1^F
NBB	0.69	0.002	0.004	0.130	0.036	0.002
BR(D decays)	0.64	0.020	0.011	0.373	0.078	0.006
Lifetime ratio	0.09	0.001	0.001	0.028	0.008	< 0.001
track efficiency	0.35	0.004	0.003	0.108	0.031	0.001
BR(D** + gap)	0.60	0.010	0.015	0.516	0.087	0.012
Backgrounds modelling	0.56	0.120	0.220	2.270	1.170	0.050
MC stat	0.13	0.020	0.025	0.725	0.233	0.009
Coulomb factor (th. unc.)	0.48	0.002	0.003	0.090	0.024	0.001
TOTAL SYST	1.18 (syst) + 0.48 (th)	0.118 (syst) + 0.002 (th)	0.127 (syst) + 0.003 (th)	4.234 (syst) + 0.090 (th)	1.164 (syst) + 0.024 (th)	0.054 (syst) + 0.001 (th)
Stat	0.24	0.039	0.043	1.340	0.413	0.015

Competitive with world best: $|V_{cb}| = (XXX \pm 0.1(stat) \pm 0.5(syst) \pm 0.2(th))10^{-3}$.

Th. uncertainty from Coulomb factor only (unc. on lattice points not included here).

 \underline{FB} and F_{r}^{D*}

$$A_{FB}(w) = \frac{3b'(w)}{6a'(w) + 2c'(w)}$$

$$F_L^{D^*}(w) = \frac{a'(w) - c'(w)}{3a'(w) + c'(w)}$$

Only statistical uncertainty shown, systematic uncertainty calculation ongoing.

Can also measure separately for electron and muon for LFU.

Global analysis: potential

From a development of the analysis in simulation can expect:

$$\begin{aligned} \mathscr{B}(B^- \to D^0 \ell \nu) &= (XXX \pm 0.01(stat) \pm 0.05(syst) \pm 0.02(th)) \,\% \\ \mathscr{B}(B^- \to D^{*0} \ell \nu) &= (XXX \pm 0.01(stat) \pm 0.11(syst) \pm 0.06(th)) \,\% \\ f_{+-}/f_{00} &= XXX \pm 0.003(stat) \pm 0.021(syst) \pm 0.024(th) \end{aligned}$$

Results competitive with world's best measurements.

Model-independent observables can be reinterpret with any form-factor model:

$$|V_{cb}|_{BGL} = (XXX \pm 0.1(stat) \pm 0.5(syst) \pm 0.2(th))10^{-3}$$

Competitive with world's best measurement.

Ratio of branching fractions, A_{FB} and $F_L^{D^*}$ are ongoing:

expected also measurements competitive with world's best.

Summary

Presented the exclusive measurements at Belle II:

- $B \rightarrow D^* \ell \nu$ measurement [PRD 108, 092013 (2023)]: compatible results with the WA. Limited by systematic uncertainties.
- $B \rightarrow D\ell\nu$ preliminary measurement [arXiv: 2210.13143].

Updated analysis is ongoing with a promising and competitive results.

- New approach: first simultaneous analysis of $B \to D\ell\nu$ and $B \to D^*\ell\nu$:
 - New measurement of f_{+-}/f_{00} .
 - Model-independent observables sensitive to the form-factors and $|V_{cb}|$.
 Important key measurements are derived from these observables.
 - Obtain form factors and $|V_{cb}|$ by fitting a-posteriori the measurements assuming any model.
 - Expected competitive results with the world's best measurements.