The q^2 Moments in Inclusive Semileptonic *B* Decays

Challenges in Semileptonic B Decays

Gael Finauri

Vienna - 25 September 2024

based on GF, Paolo Gambino 2310.20324, + new results

The CKM matrix element V_{cb} is a <u>fundamental input</u> of the Standard Model

The CKM matrix element V_{cb} is a <u>fundamental input</u> of the Standard Model

The inclusive semi-leptonic decay rate in the SM

$$\Gamma(\bar{B} \to X_c \ell^- \bar{\nu}_\ell) = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} f(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \dots)$$

The CKM matrix element V_{cb} is a <u>fundamental input</u> of the Standard Model

The inclusive semi-leptonic decay rate in the SM

$$\Gamma(\bar{B} \to X_c \ell^- \bar{\nu}_\ell) = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} f(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \dots)$$

is computed through a power expansion in $\Lambda_{\rm QCD}/m_b\sim 0.1$

$$f(m_b, m_c, \ldots) = f^{\mathsf{LP}} + f^{\mathsf{NLP}, \pi} \frac{\mu_{\pi}^2}{m_b^2} + f^{\mathsf{NLP}, G} \frac{\mu_G^2}{m_b^2} + f^{\mathsf{NNLP}, D} \frac{\rho_D^3}{m_b^3} + f^{\mathsf{NNLP}, LS} \frac{\rho_{LS}^3}{m_b^3} + \mathcal{O}\left(\frac{\Lambda_{\mathsf{QCD}}^4}{m_b^4}\right)$$

 W^{-}

 \bar{q}

The CKM matrix element V_{cb} is a <u>fundamental input</u> of the Standard Model

The inclusive semi-leptonic decay rate in the SM

$$\Gamma(\bar{B} \to X_c \ell^- \bar{\nu}_\ell) = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} f(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, ...)$$

is computed through a power expansion in $\Lambda_{\rm QCD}/m_b\sim 0.1$

$$f(m_b, m_c, \ldots) = f^{\mathsf{LP}} + f^{\mathsf{NLP}, \pi} \frac{\mu_{\pi}^2}{m_b^2} + f^{\mathsf{NLP}, G} \frac{\mu_G^2}{m_b^2} + f^{\mathsf{NNLP}, D} \frac{\rho_D^3}{m_b^3} + f^{\mathsf{NNLP}, LS} \frac{\rho_{LS}^3}{m_b^3} + \mathcal{O}\left(\frac{\Lambda_{\mathsf{QCD}}^4}{m_b^4}\right)$$

From the experimental measurement of $\Gamma(\bar{B} \to X_c \ell^- \bar{\nu}_\ell)$ we could extract $|V_{cb}|$...

The CKM matrix element V_{cb} is a <u>fundamental input</u> of the Standard Model

The inclusive semi-leptonic decay rate in the SM

$$\Gamma(\bar{B} \to X_c \ell^- \bar{\nu}_\ell) = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} f(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, ...)$$

is computed through a power expansion in $\Lambda_{\rm QCD}/m_b\sim 0.1$

$$f(m_b, m_c, \ldots) = f^{\mathsf{LP}} + f^{\mathsf{NLP}, \pi} \frac{\mu_{\pi}^2}{m_b^2} + f^{\mathsf{NLP}, G} \frac{\mu_G^2}{m_b^2} + f^{\mathsf{NNLP}, D} \frac{\rho_D^3}{m_b^3} + f^{\mathsf{NNLP}, LS} \frac{\rho_{LS}^3}{m_b^3} + \mathcal{O}\left(\frac{\Lambda_{\mathsf{QCD}}^4}{m_b^4}\right)$$

From the experimental measurement of $\Gamma(\bar{B} \to X_c \ell^- \bar{\nu}_\ell)$ we could extract $|V_{cb}|$... provided we first determine the non-pert. parameters μ_{π}^2 , μ_G^2 , ρ_D^3 and ρ_{LS}^3

The CKM matrix element V_{cb} is a <u>fundamental input</u> of the Standard Model

The inclusive semi-leptonic decay rate in the SM

$$\Gamma(\bar{B} \to X_c \ell^- \bar{\nu}_\ell) = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} f(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \dots)$$

is computed through a power expansion in $\Lambda_{\rm QCD}/m_b\sim 0.1$

$$f(m_b, m_c, \ldots) = f^{\mathsf{LP}} + f^{\mathsf{NLP}, \pi} \frac{\mu_{\pi}^2}{m_b^2} + f^{\mathsf{NLP}, G} \frac{\mu_G^2}{m_b^2} + f^{\mathsf{NNLP}, D} \frac{\rho_D^3}{m_b^3} + f^{\mathsf{NNLP}, LS} \frac{\rho_{LS}^3}{m_b^3} + \mathcal{O}\left(\frac{\Lambda_{\mathsf{QCD}}^4}{m_b^4}\right)$$

From the experimental measurement of $\Gamma(\bar{B} \to X_c \ell^- \bar{\nu}_\ell)$ we could extract $|V_{cb}|...$ provided we first determine the non-pert. parameters μ_{π}^2 , μ_G^2 , ρ_D^3 and ρ_{LS}^3 They can also be extracted from **DATA**!

The **inclusive decay spectrum** is characterized by <u>3 kinematical variables</u>: lepton energy (E_ℓ), dilepton invariant mass (q^2), hadronic invariant mass (m_X^2)

The **inclusive decay spectrum** is characterized by <u>3 kinematical variables</u>: lepton energy (E_ℓ), dilepton invariant mass (q^2), hadronic invariant mass (m_X^2) and obeys similar expansion with same HQE parameters

$$\frac{d^3\Gamma}{dE_\ell dq^2 dm_X^2} = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} \frac{d^3f}{dE_\ell dq^2 dm_X^2}(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \ldots)$$

The **inclusive decay spectrum** is characterized by <u>3 kinematical variables</u>: lepton energy (E_ℓ), dilepton invariant mass (q^2), hadronic invariant mass (m_X^2) and obeys similar expansion with <u>same HQE parameters</u>

$$\frac{d^3\Gamma}{dE_\ell dq^2 dm_X^2} = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} \frac{d^3f}{dE_\ell dq^2 dm_X^2}(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \ldots)$$

Experimentally we have access to the moments of the spectrum (Belle, Belle II, BaBar, ...)

$$M_{ijk} \equiv \int dE_{\ell} dq^2 dm_X^2 \ (E_{\ell})^i (q^2)^j (m_X^2)^k \frac{d^3 \Gamma}{dE_{\ell} dq^2 dm_X^2}$$

building normalized moments $\hat{M}_{ijk} \equiv M_{ijk}/M_{000}$ the prefactor with $|V_{cb}|^2$ drops out!

The **inclusive decay spectrum** is characterized by <u>3 kinematical variables</u>: lepton energy (E_ℓ), dilepton invariant mass (q^2), hadronic invariant mass (m_X^2) and obeys similar expansion with <u>same HQE parameters</u>

$$\frac{d^3\Gamma}{dE_\ell dq^2 dm_X^2} = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} \frac{d^3f}{dE_\ell dq^2 dm_X^2}(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \ldots)$$

Experimentally we have access to the moments of the spectrum (Belle, Belle II, BaBar, ...)

$$M_{ijk} \equiv \int dE_{\ell} dq^2 dm_X^2 \ (E_{\ell})^i (q^2)^j (m_X^2)^k \frac{d^3 \Gamma}{dE_{\ell} dq^2 dm_X^2}$$

building normalized moments $\hat{M}_{ijk} \equiv M_{ijk}/M_{000}$ the prefactor with $|V_{cb}|^2$ drops out! \Rightarrow global fit to normalized moments in E_{ℓ} , q^2 and m_X^2 to extract the HQE parameters.

The **inclusive decay spectrum** is characterized by <u>3 kinematical variables</u>: lepton energy (E_ℓ), dilepton invariant mass (q^2), hadronic invariant mass (m_X^2) and obeys similar expansion with <u>same HQE parameters</u>

$$\frac{d^3\Gamma}{dE_\ell dq^2 dm_X^2} = |V_{cb}|^2 G_F^2 \frac{m_b^5}{16\pi^3} \frac{d^3f}{dE_\ell dq^2 dm_X^2}(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \ldots)$$

Experimentally we have access to the moments of the spectrum (Belle, Belle II, BaBar, ...)

$$M_{ijk} \equiv \int dE_{\ell} dq^2 dm_X^2 \ (E_{\ell})^i (q^2)^j (m_X^2)^k \frac{d^3 \Gamma}{dE_{\ell} dq^2 dm_X^2}$$

building normalized moments $\hat{M}_{ijk} \equiv M_{ijk}/M_{000}$ the prefactor with $|V_{cb}|^2$ drops out! \Rightarrow global fit to normalized moments in E_{ℓ} , q^2 and m_X^2 to extract the HQE parameters.

So far only existed fits to (E_{ℓ}, m_X^2) moments [Bordone et al. '21] or q^2 separately [Bernlochner et al. '22]. First combined (E_{ℓ}, m_X^2, q^2) fit in [GF, Gambino '23]. Now updated results!

Theory State of the Art in $\bar{B} \to X_c \ell \bar{\nu}$

Theory State of the Art in $\bar{B} \rightarrow X_c \ell \bar{\nu}$

In practice measured at several lower cuts in q^2

$$M_n(q_{\rm cut}^2) = \int_{q_{\rm cut}^2}^{q_{\rm max}^2} dq^2 \frac{d\Gamma}{dq^2} (q^2)^n \,, \qquad \langle q^{2n} \rangle = \frac{M_n(q_{\rm cut}^2)}{M_0(q_{\rm cut}^2)}$$

central moments

In practice measured at several lower cuts in $q^2\,$

$$M_n(q_{\mathsf{cut}}^2) = \int_{q_{\mathsf{cut}}^2}^{q_{\mathsf{max}}^2} dq^2 \frac{d\Gamma}{dq^2} (q^2)^n \,, \qquad \langle q^{2n} \rangle = \frac{M_n(q_{\mathsf{cut}}^2)}{M_0(q_{\mathsf{cut}}^2)}$$

$$Q_1(q_{\mathsf{cut}}^2) = \langle q^2 \rangle$$

$$Q_2(q_{\mathsf{cut}}^2) = \langle (q^2 - \langle q^2 \rangle)^2 \rangle$$

$$Q_3(q_{\mathsf{cut}}^2) = \langle (q^2 - \langle q^2 \rangle)^3 \rangle$$

to reduce correlations!

central moments

In practice measured at several lower cuts in q^2

$$M_n(q_{\mathsf{cut}}^2) = \int_{q_{\mathsf{cut}}^2}^{q_{\mathsf{max}}^2} dq^2 \frac{d\Gamma}{dq^2} (q^2)^n , \qquad \langle q^{2n} \rangle = \frac{M_n(q_{\mathsf{cut}}^2)}{M_0(q_{\mathsf{cut}}^2)}$$

$$Q_1(q_{\mathsf{cut}}^2) = \langle q^2 \rangle$$

$$Q_2(q_{\mathsf{cut}}^2) = \langle (q^2 - \langle q^2 \rangle)^2 \rangle$$

$$Q_3(q_{\mathsf{cut}}^2) = \langle (q^2 - \langle q^2 \rangle)^3 \rangle$$

to reduce correlations!

measured only recently by Belle (2021) and Belle II (2022).

central moments

In practice measured at several lower cuts in q^2

$$M_n(q_{\rm cut}^2) = \int_{q_{\rm cut}^2}^{q_{\rm max}^2} dq^2 \frac{d\Gamma}{dq^2} (q^2)^n \,, \qquad \langle q^{2n} \rangle = \frac{M_n(q_{\rm cut}^2)}{M_0(q_{\rm cut}^2)}$$

$$Q_1(q_{\mathsf{cut}}^2) = \langle q^2 \rangle$$

$$Q_2(q_{\mathsf{cut}}^2) = \langle (q^2 - \langle q^2 \rangle)^2 \rangle$$

$$Q_3(q_{\mathsf{cut}}^2) = \langle (q^2 - \langle q^2 \rangle)^3 \rangle$$

to reduce correlations!

measured only recently by Belle (2021) and Belle II (2022). Theoretical predictions follow from the HQE of the q^2 spectrum

$$\frac{d\Gamma}{dq^2} = |V_{cb}|^2 G_F^2 \frac{m_b^3}{16\pi^3} \bigg[S^{(0)} + S^{(\pi)} \frac{\mu_\pi^2}{2m_b^2} + S^{(G)} \frac{\mu_G^2}{2m_b^2} + S^{(LS)} \frac{\rho_{LS}^3}{2m_b^3} + S^{(D)} \frac{\rho_D^3}{2m_b^3} + \mathcal{O}\bigg(\frac{\Lambda_{\rm QCD}^4}{m_b^4}\bigg) \bigg]$$

central moments

In practice measured at several lower cuts in q^2

$$M_n(q_{\mathsf{cut}}^2) = \int_{q_{\mathsf{cut}}^2}^{q_{\mathsf{max}}^2} dq^2 \frac{d\Gamma}{dq^2} (q^2)^n , \qquad \langle q^{2n} \rangle = \frac{M_n(q_{\mathsf{cut}}^2)}{M_0(q_{\mathsf{cut}}^2)}$$

$$Q_1(q_{\mathsf{cut}}^2) = \langle q^2 \rangle$$

$$Q_2(q_{\mathsf{cut}}^2) = \langle (q^2 - \langle q^2 \rangle)^2 \rangle$$

$$Q_3(q_{\mathsf{cut}}^2) = \langle (q^2 - \langle q^2 \rangle)^3 \rangle$$

to reduce correlations!

measured only recently by Belle (2021) and Belle II (2022). Theoretical predictions follow from the HQE of the q^2 spectrum

$$\frac{d\Gamma}{dq^2} = |V_{cb}|^2 G_F^2 \frac{m_b^3}{16\pi^3} \bigg[S^{(0)} + S^{(\pi)} \frac{\mu_\pi^2}{2m_b^2} + S^{(G)} \frac{\mu_G^2}{2m_b^2} + S^{(LS)} \frac{\rho_{LS}^3}{2m_b^3} + S^{(D)} \frac{\rho_D^3}{2m_b^3} + \mathcal{O}\bigg(\frac{\Lambda_{\rm QCD}^4}{m_b^4}\bigg) \bigg]$$

coefficient functions have perturbative expansion (NNLO only for leading power $S^{(0)}$)

$$S^{(i)}(q^2) = S^{(i,0)}(q^2) + \frac{\alpha_s}{\pi} S^{(i,1)}(q^2) + \frac{\alpha_s^2}{\pi^2} S^{(i,2)}(q^2) + \mathcal{O}(\alpha_s^3)$$

full two-loop [Fael, Herren, '24] new implementation to the fit, before only BLM ${\cal O}(lpha_s^2eta_0)$

To avoid renormalon ambiguities and badly converging perturbative series: <u>on-shell</u> \rightarrow kinetic scheme ($\mu_k = 1$ GeV, $\alpha_s^{(4)}(m_b) = 0.2185$)

[Bigi, Shifman, Uraltsev, Vainshtein '97]

To avoid renormalon ambiguities and badly converging perturbative series: on-shell \rightarrow kinetic scheme ($\mu_k = 1$ GeV, $\alpha_s^{(4)}(m_b) = 0.2185$)

[Bigi, Shifman, Uraltsev, Vainshtein '97]

$$\begin{split} m_b^{\text{OS}} &= m_b^{\text{kin}} \left(1 + 0.029_{\alpha_s} + 0.027_{\alpha_s^2} \right) \\ (\mu_\pi^2)^{\text{OS}} &= (\mu_\pi^2)^{\text{kin}} - 0.093_{\alpha_s} \text{GeV}^2 - 0.073_{\alpha_s^2} \text{GeV}^2 \\ (\rho_D^3)^{\text{OS}} &= (\rho_D^3)^{\text{kin}} - 0.062_{\alpha_s} \text{GeV}^3 - 0.045_{\alpha_s^2} \text{GeV}^3 \end{split}$$

• change in HQE parameters changes only the LP

To avoid renormalon ambiguities and badly converging perturbative series: on-shell \rightarrow kinetic scheme ($\mu_k = 1$ GeV, $\alpha_s^{(4)}(m_b) = 0.2185$)

[Bigi, Shifman, Uraltsev, Vainshtein '97]

$$\begin{split} m_b^{\rm OS} &= m_b^{\rm kin} \left(1 + 0.029_{\alpha_s} + 0.027_{\alpha_s^2} \right) \\ (\mu_\pi^2)^{\rm OS} &= (\mu_\pi^2)^{\rm kin} - 0.093_{\alpha_s} {\rm GeV}^2 - 0.073_{\alpha_s^2} {\rm GeV}^2 \\ (\rho_D^3)^{\rm OS} &= (\rho_D^3)^{\rm kin} - 0.062_{\alpha_s} {\rm GeV}^3 - 0.045_{\alpha_s^2} {\rm GeV}^3 \end{split}$$

- change in HQE parameters changes only the LP
- power corrections are affected by the mass conversion

To avoid renormalon ambiguities and badly converging perturbative series: on-shell \rightarrow kinetic scheme ($\mu_k = 1$ GeV, $\alpha_s^{(4)}(m_b) = 0.2185$)

[Bigi, Shifman, Uraltsev, Vainshtein '97]

$$\begin{split} m_b^{\text{OS}} &= m_b^{\text{kin}} \left(1 + 0.029_{\alpha_s} + 0.027_{\alpha_s^2} \right) \\ (\mu_\pi^2)^{\text{OS}} &= (\mu_\pi^2)^{\text{kin}} - 0.093_{\alpha_s} \text{GeV}^2 - 0.073_{\alpha_s^2} \text{GeV}^2 \\ (\rho_D^3)^{\text{OS}} &= (\rho_D^3)^{\text{kin}} - 0.062_{\alpha_s} \text{GeV}^3 - 0.045_{\alpha_s^2} \text{GeV}^3 \end{split}$$

- change in HQE parameters changes only the LP
- power corrections are affected by the mass conversion
- α_s^2 corrections to ρ_D^3 : explain part of the discrepancy with RPI fit

[Bernlochner, Fael, Olschewsky, Persson, van Tonder, Vos, Welsch 2022]

To avoid renormalon ambiguities and badly converging perturbative series: on-shell \rightarrow kinetic scheme ($\mu_k = 1$ GeV, $\alpha_s^{(4)}(m_b) = 0.2185$)

[Bigi, Shifman, Uraltsev, Vainshtein '97]

$$\begin{split} m_b^{\text{OS}} &= m_b^{\text{kin}} \left(1 + 0.029_{\alpha_s} + 0.027_{\alpha_s^2} \right) \\ (\mu_\pi^2)^{\text{OS}} &= (\mu_\pi^2)^{\text{kin}} - 0.093_{\alpha_s} \text{GeV}^2 - 0.073_{\alpha_s^2} \text{GeV}^2 \\ (\rho_D^3)^{\text{OS}} &= (\rho_D^3)^{\text{kin}} - 0.062_{\alpha_s} \text{GeV}^3 - 0.045_{\alpha_s^2} \text{GeV}^3 \end{split}$$

- change in HQE parameters changes only the LP
- power corrections are affected by the mass conversion
- α_s^2 corrections to ρ_D^3 : explain part of the discrepancy with RPI fit

[Bernlochner, Fael, Olschewsky, Persson, van Tonder, Vos, Welsch 2022]

•
$$m_c$$
: on-shell $\rightarrow \overline{\text{MS}}$ at μ_c

 $m_c^{\rm OS} = m_c (2 \text{ GeV}) \left(1 + 0.18_{\alpha_s} + 0.14_{\alpha_s^2} \right) = m_c (3 \text{ GeV}) \left(1 + 0.25_{\alpha_s} + 0.18_{\alpha_s^2} \right)$

BLM vs Full NNLO

Power corrections are important for higher moments!

Power corrections are important for higher moments!

Systematic shift between Belle and Belle II data $\sim 2\sigma \Rightarrow dE_{\ell}$ and dm_X^2 moms. can help

Power corrections are important for higher moments!

Systematic shift between Belle and Belle II data $\sim 2\sigma \Rightarrow dE_{\ell}$ and dm_X^2 moms. can help Inclusion of NLO and NNLO terms can have big impact on HQE parameters!

Fit to (E_ℓ, m_X^2) moments [Bordone, Capdevila, Gambino 2021]

 q^2 moms probe different direction in parameter space \Rightarrow reduce parametric uncertainty!

Fit to (E_{ℓ}, m_X^2, q^2) moments (new, preliminary!)

 q^2 moms probe different direction in parameter space \Rightarrow reduce parametric uncertainty!

Fit Results (PRELIMINARY)

m_b^{kin}	$\overline{m}_c(2{\rm GeV})$	μ_{π}^2	μ_G^2	$ ho_D^3$	$ ho_{LS}^3$	$BR_{c\ell\nu}$	$10^{3} V_{cb} $
4.572	1.090	0.430	0.282	0.161	-0.091	10.61	41.83
0.012	0.010	0.040	0.048	0.018	0.089	0.15	0.47
1	0.389	-0.229	0.561	-0.025	-0.181	-0.062	-0.422
	1	0.019	-0.238	-0.030	0.083	0.033	0.076
		1	-0.097	0.536	0.262	0.142	0.334
			1	-0.261	0.006	0.006	-0.260
				1	-0.019	0.022	0.139
					1	-0.011	0.067
						1	0.697
							1

reached a precision of 1.1% on $|V_{cb}|$ ($\chi^2/dof = 0.59$) Big improvement in $\sigma_{\mu_{\pi}^2}$ (0.056 \rightarrow 0.040) and $\sigma_{\rho_D^3}$ (0.031 \rightarrow 0.018) w.r.t. (E_{ℓ}, m_X^2) fit Impact of NNLO q^2 : ρ_D^3 : 0.176 \rightarrow 0.161 and $10^3 |V_{cb}|$: 41.97 \rightarrow 41.83 *other small improvements to the fit: inclusion of QED effects [Big et al. '23], ..., see [2310.20324] for details.

Fit Results (PRELIMINARY)

 1σ regions. q^2 moments independent on μ_π^2

• Included in a global fit the newly measured q^2 moments, with the new NNLO theretical results. Together with the E_ℓ and m_X^2 moments \Rightarrow new extraction of the HQE parameters.

- Included in a global fit the newly measured q^2 moments, with the new NNLO theretical results. Together with the E_ℓ and m_X^2 moments \Rightarrow new extraction of the HQE parameters.
- Reduced uncertainties and correlations among parameters.

- Included in a global fit the newly measured q^2 moments, with the new NNLO theretical results. Together with the E_ℓ and m_X^2 moments \Rightarrow new extraction of the HQE parameters.
- Reduced uncertainties and correlations among parameters.
- Final result $|V_{cb}| = (41.83 \pm 0.47) \cdot 10^{-3}$ has a 1.1% relative uncertainty.

- Included in a global fit the newly measured q^2 moments, with the new NNLO theretical results. Together with the E_ℓ and m_X^2 moments \Rightarrow new extraction of the HQE parameters.
- Reduced uncertainties and correlations among parameters.
- Final result $|V_{cb}| = (41.83 \pm 0.47) \cdot 10^{-3}$ has a 1.1% relative uncertainty.

Thank You!

Backup Slides

Theoretical Correlations

Correlations between different central moments set to 0

Correlations between same moments at 0.5 GeV² distance in q_{cut}^2 :

$$\xi(q_{\rm cut}^2) = 1 - \frac{1}{2} e^{-\frac{9{\rm GeV}^2 - q_{\rm cut}^2}{\Delta_q}}$$

 $q_{\rm cut}^2$ dependent to take into account spectrum endpoint

Fit Variations

