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At the leading order in EW interactions, the inclusive differential rate factorizes into hadronic and
leptonic parts:

dΓ

dq2dr 2dEl
∝ G 2

F |Vcb|2W αβLαβ ,

q ≡ kl + kν̄ , and r ≡ pB − q.

The leptonic tensor is fixed to all orders in QCD:

Lαβ ≡ 1

2

∑
sl sν̄

Aα
l A

†β
l , Aα

l ≡ ū
(sl )
l γαPLv

(sν̄ )
ν̄ .

The hadronic tensor W αβ is defined as

W αβ ≡
∑
Xc

⟨B|Jα
H |Xc⟩ ⟨Xc |J†β

H |B⟩ , Jα
H ≡ b̄γαPLc,
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The optical theorem and the Operator Product Expansion can be used to write W αβ as a series of
matrix elements suppressed by powers of ΛQCD/mb:

W αβ ∝ Im
∑
k≥0

Ck ⟨B|O(n)αβ
k |B⟩

m
n(k)
b

, where
⟨B|O(n)αβ

k |B⟩
⟨B|B⟩ ∼ Λn

QCD .

The Wilson coefficients Ck are computed perturbatively in powers of αs in a matching between
partonic QCD and HQE.
At the LO and NLO:

⟨B|O(0)
k |B⟩ = 2mB

(
1 + O

(
Λ2
QCD

m2
b

))
, O

(1)
k = 0|EOM + O

(
Λ2
QCD

m2
b

)
The same procedure can be performed for any spectral moment:

M[w ] ∝ G 2
F |Vcb|2

∫
[dPS ]w [v , kl , kν ]W αβLαβ = G 2

F |Vcb|2Im
∑
k≥0

Ĉk [w ] ⟨B|O(n)
k |B⟩

m
n(k)
b

.

Moments with weight functions w independent of the B meson velocity v are called
reparametrization invariant (RPI). The Wilson coefficients of such moments satisfy linear relations
that allow one to eliminate some of them from the OPE
[T. Mannel, K. K. Vos, JHEP 06 (2018) 115].
Example: the q2 spectrum

(
w = δ[(kl + kν)2 − q2]

)
and its moments

(
w = (kl + kν)2k

)
.
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Lαβ ≡ 1

2

∑
sl sν̄

Aα
l A

†β
l = kα

l k
β
ν̄ + kβ

l k
α
ν̄ − (klkν̄)gαβ − iϵαρβσklρkν̄σ , Aα

l ≡ ū
(sl )
l γαPLv

(sν̄ )
ν̄ .

Assuming massless leptons, one can integrate Lαβ over El to obtain

dΓ

dq2dr 2
∝ G 2

F |Vcb|2W αβ

∫
dElLαβ ∝ G 2

F |Vcb|2
|q⃗|
3

(qαqβ − q2gαβ)W αβ ,

The transverse structure can be reproduced by polarization vectors εµ of an auxiliary final state
W -boson with M2

W = q2:∑
polarizations

εαεβ =
qαqβ − q2gαβ

q2
∝

∫
dElLαβ =⇒ dΓ

dq̃2
=

q̃2

48π2
ΓW , q̃2 ≡ q2

M2
W

.
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dΓ

dq̃2
=

q̃2

48π2
ΓW

The rate ΓW is computed in perturbative QCD in powers of αs .

The replacement (B → Xc l ν̄) −→ (B → XcW ) allows us to retain the q2 dependence of the
process that would normally be integrated over when using the optical theorem.

Additionally, the lepton loop is integrated out for the price of an additional scale q2.

Using this method, we computed the partonic part of the q2 spectrum, including the O(α2
s )

correction.
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1, 3, and 39 diagrams

1, 7, and 98 masters 

12, 162, and 17664 integrals
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Analytic solutions:
([M. Fael and F. Herren,
JHEP 05 (2024) 287])

The DEs for a large class
of integrals can be solved
using the differential
equations in the canonical
form method.

The boundary condition
was found using AMFlow.
[arXiv:2201.11669]

Solution given in terms of
Goncharov
Polylogarithms.

No analytic solution
known for integrals with 3
cut charm quarks.

1, 3, and 39 diagrams

1, 7, and 98 masters 

12, 162, and 17664 integrals
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No analytic solution
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1, 3, and 39 diagrams

1, 7, and 98 masters 

12, 162, and 17664 integrals

Fits to numerical solutions:
([arXiv:2410.XXXXX])

Dense scans in the
(mc , q

2) space using
AMFlow.

Numerical results used for
fits of elementary
functions.

Accuracy of the more
than 4 significant digits
when compared with
exact results, far higher
than experimental
precision.

The fully inlusive
spectrum and the triple
charm contribution can
be computed.
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Scalar Feynman integrals can be solved by deriving and solving ODEs in different quantities as
free variables. Usually, ratios of masses or scalar products are used.

In the auxiliary mass flow method, the Feynman regulator η is treated as a free variable instead:

Ia1a2(q2,m2
c) = lim

η→0+

∫
MD

dDk

(2π)D
1(

k2 −m2
c + iη

)a1 1(
(pb − k)2 − q2 + iη

)a2 ≡ lim
η→0+

Ĩa1a2(q2, η)

One can set up ODEs for Ĩk(q2,m2
c , η) in η using IBP reduction:

dĨk
dη

=
∑
l

Mkl(η, q
2,m2

c , ϵ)Ĩl .

A convenient point for a boundary condition is in the η → +i∞ limit. For such a choice, the
master integrals reduce to tadpoles with all masses equal to

√
η.

Ĩa1a2(q2, η) −−−−−→
η→+i∞

∫
MD

dDk

(2π)D
1(

k2 − η
)a1+a2

=

Numerical results for such tadpoles are available up to 5 loops.
The auxiliary mass flow method was automated in the Mathematica package AMFlow

[X. Liu and Y.-Q. Ma, Comput.Phys.Commun. 283 (2023) 108565]. It allows for efficient
numerical evaluation of multi-loop master integrals with arbitrary precision.
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Ĩa1a2(q2, η) −−−−−→
η→+i∞

∫
MD

dDk

(2π)D
1(

k2 − η
)a1+a2

=

Numerical results for such tadpoles are available up to 5 loops.
The auxiliary mass flow method was automated in the Mathematica package AMFlow

[X. Liu and Y.-Q. Ma, Comput.Phys.Commun. 283 (2023) 108565]. It allows for efficient
numerical evaluation of multi-loop master integrals with arbitrary precision.

9 / 17



Scalar Feynman integrals can be solved by deriving and solving ODEs in different quantities as
free variables. Usually, ratios of masses or scalar products are used.
In the auxiliary mass flow method, the Feynman regulator η is treated as a free variable instead:

Ia1a2(q2,m2
c) = lim

η→0+

∫
MD

dDk

(2π)D
1(

k2 −m2
c + iη

)a1 1(
(pb − k)2 − q2 + iη

)a2 ≡ lim
η→0+
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After computing the 98 masters without cuts needed for the fully inclusive correction, we isolate
the contribution from the b → ccclν channel.

Due to the small range of allowed values of q2/m2
b, the HQE of the triple charm spectrum is

expected to be badly convergent. Fortunately, the triple charm width is strongly phase-space
suppressed.
We computed the 22 cut masters contributing to the b → ccclν numerically in the same way as
the fully inclusive correction. AMFlow allows for a simple inclusion of unitary cuts:∫

MD

dDk

(2π)D
δ(k2 −m2)J(k) =

1

2πi
lim

η→0+

∫
MD

dDk

(2π)D

(
1

k2 −m2 + iη
− 1

k2 −m2 − iη

)
J(k).
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The fully inclusive spectrum was computed numerically with the precision of 60 significant digits
for 682 points in the (q2/m2

b,mc/mb) ≡ (q̄2, m̄c) space, ranging from m̄c = 0.14 to m̄c = 0.33.
The triple-charm correction was computed for 650 points.

The results were used to perform a fits with the following ansatz:

dΓ
(2)
3c

dq2
=m3

bG
2
F |Vcb|2L

7
2
3c

∑
jk

C
(3c)
jk m̄j

c q̄
2k , L3c ≡

(
q̄2 − (1 + 3m̄c)2

)(
q̂2 − (1 − 3m̄c)2

)
dΓ

(2)
1c

dq2
=m3

bG
2
F |Vcb|2L1c

∑
jkl

C
(1c)
jkl m̄j

c q̄
2k logl L1c , L1c ≡

(
q̄2 − (1 + m̄c)2

)(
q̄2 − (1 − m̄c)2

)

The results of the single-charm fit were compared with the analytic formula for O(15000) points.
The relative error does not exceed 0.0008.

The error of the triple-charm fit is smaller than 1.4% when compared with numerical results.
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Normalized spectrum of the single-charm channel in the on-shell scheme at the NNLO.
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The LO error was estimated as ±αs(mb)LO/π.
The NLO and NNLO errors come from varying the renormalization scale between mb/2 and 2mb.
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The first four centralized q2 moments in the on-shell scheme as functions of the q2
cut .
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Red crosses (+) depict results quoted from [M. Fael and F. Herren, JHEP 05 (2024) 287].
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The leading normalized spectrum of the triple-charm channel.
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The probability of the triple-charm decay decreases rapidly with mc .
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The relative impact of the triple-charm channel on the NNLO correction to the centralized
moments.
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Conclusions
The q2 spectrum of the inclusive semileptonic decay can play an important role for semileptonic
fits due to its RP invariance.

The partonic contribution to the q2 spectrum is now available up to O(α2
s ).

The analytic form of the O(α2
s ) correction to the single-charm channel was published in [M. Fael

and F. Herren, JHEP 05 (2024) 287] and independently confirmed by a dense numerical scan
using the auxiliary mass flow method.

The triple-charm q2 spectrum was found as a fit of elementary functions to a numerical scan.

Its contribution can impact the semileptonic fits only for very low values of q2
cut and mc/mb.
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