PRECISION QCD CORRECTIONS TO SEMILEPTONIC B DECAYS Matteo Fael (CERN)

Challenges in Semileptonic B Decays - Vienna - Sept. 25th 2024

in collaboration with F. Herren, J. Usovitsch

Funded by the European Union

OUTLINE

► NNLO QCD corrections to the q^2 spectrum of $B \rightarrow X_c l \bar{\nu}_l$

► Third order corrections to $\Gamma(B \rightarrow X_u l \bar{\nu}_l)$

NNLO QCD corrections to the q^2 spectrum of $B \rightarrow X_c l \bar{\nu}_l$

MF, Herren, JHEP 05 (2024) 287

M. Fael | Challenges in Semileptonic B Decays | Sept. 25 2024

$|V_{cb}|$ FROM q^2 MOMENTS

$|V_{cb}| = (41.69 \pm 0.59_{\text{fit}} \pm 0.23_{\text{h.o.}}) \times 10^{-3}$ $= (41.69 \pm 0.63) \times 10^{-3}$

Bernlochner, MF, Olschwesky, Person, van Tonder, Vos, Welsch, JHEP 10 (2022) 068

Γ	tree	$lpha_{s}$	α_s^2	$lpha_s^3$	$\langle (q^2)^n \rangle$	tree	$lpha_{s}$	α_s^2	α_s^3
Partonic		\checkmark	1	1	Partonic	\	\checkmark	K	
μ_G^2	1	\checkmark			μ_G^2	\checkmark	1		
$ ho_D^3$	1	\checkmark			$ ho_D^3$	\checkmark	\checkmark		
$1/m_b^4$	1				$1/m_b^4$	\checkmark			
$m_b^{\rm kin}/\overline{m}_c$		1	1	1		NNLO) corre	ections	miss

N3LO corrections to the total rate! MF, Schönwald, Steinhauser, Phys.Rev.Lett. 125 (2020) 5, 052003 Phys.Rev.D 103 (2021) 1, 014005, Phys.Rev.D 104 (2021) 1, 016003

COME Finauri	SINED FIT Gambino, Old DELI $E_l \rangle_{E_{cut}}, \langle l$	q^2 , JHEP PHI, $M_X^2\rangle_E$	E_l AN 02 (202 CDF, Δ cut	ID M_{X}^{2} 4) 206 BaBar, r _{E_{cut}}	2 MON Belle	IENTS	a:		• • •
► N	ew Bell	e & I	Belle I	I: $\langle q^2 \rangle$	a^2				[GeV ³]
$ V_{cb} = (41.97 \pm 0.27_{exp} \pm 0.31_{th} \pm 0.25_{\Gamma}) \times 10^{-3}$ = (41.97 ± 0.48) × 10 ⁻³ Compared with 2021 fit: 0.51 → 0.48 reduction 0.031 → 0.019 reduction									
$m_b^{\rm kin}$	$\overline{m}_c(2{ m GeV})$	μ_{π}^2	$\mu_G^2(m_b)$	$ ho_D^3(m_b)$	$ ho_{LS}^3$	$BR_{c\ell\nu}$	$10^{3} V_{cb} $	Theory Error	
4.573	1.090	0.454	0.288	0.176	-0.113	10.63	41.97	Param. Error	
0.012	0.010	0.043	0.049	0.019	0.090	0.15	0.48		-
1	0.380	-0.219	0.557	-0.013	-0.172	-0.063	-0.428		
	1	0.005	-0.235	-0.051	0.083	0.030	0.071	Jec I	•
		1	-0.083	0.537	0.241	0.140	0.335		
			1	-0.247	0.010	0.007	-0.253		
				1	-0.023	0.023	0.140		
					1	-U.UII 1	0.000		_
						T	1	5	
								1 2 3 4 5	6

See also talk by G. Finauri

hep-ph/0911.4142

Second order QCD corrections to inclusive semileptonic $b \to X_c l \bar{\nu}_l$ decays with massless and massive lepton

Sandip Biswas¹ and Kirill Melnikov

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, U.S.A.

E-mail: sbiswas@pha.jhu.edu, melnikov@pha.jhu.edu

NNLO corrections for E_l and M_X moments at specific values of ρ and $E_{\rm cut}$

Hi Mateo, Nice to e-meet you. Yes, I am one of the authors but unfortunately no, I lost access to that MC code a while back.

SANDIP BISWAS

sbiswas@resultant.com 410-802-2245

RESULTANT.COM

CONFIDENTIALITY NOTICE: The information transmitted by this email is intended only for the person or entity to which it is addressed. This email may contain proprietary, business-confidential and/or privileged material. If you are not the intended recipient of this message, be aware that any use, review, retransmission, distribution, reproduction or any action taken in reliance upon this message is strictly prohibited. If you received this in error, please contact the sender and delete the material from all computers.

See More from Matteo Fael

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

26. January 2023 at 14:13

NNLO CORRECTIONS TO q^2 SPECTRUM

MF, Herren,, hep-ph/2403.03976

Jezabeck, Kühn, Nucl. Phys. B 314 (1989) 1 Moreno, Mannel, Pivovarov, *Phys.Rev.D* 105 (2022) 5, 054033

$$\rho = m_c / m_b \quad \hat{q}^2 = q^2 / m_b^2$$

Jezabeck, Kühn, Nucl. Phys. B 314 (1989) 1 Moreno, Mannel, Pivovarov, *Phys.Rev.D* 105 (2022) 5, 054033

Integration w.r.t. neutrino-electron phase space

$$\mathscr{L}^{\mu\nu}(p_L) = \int L^{\mu\nu} d\Phi_2(p_L; p_l, p_\nu) = \frac{1}{384\pi^5} \left(1 - \frac{m_\ell^2}{p_L^2}\right)^2 \left[\left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu} p_L^{\nu} - g^{\mu\nu} p_L^2 \left(1 + \frac{m_\ell^2}{2p_L^2}\right) \right]$$

Inverse unitarity

$$\delta(p_L^2 - q^2) \to \frac{1}{2\pi i} \left[\frac{1}{p_L^2 - q^2 - i0} - \frac{1}{p_L^2 - q^2 + i0} \right]$$

NNLO calculation ► Three-loop diagrams

► Three different masses: m_b^2, m_c^2, q^2

MASTER INTEGRALS

> 98 master integrals with cuts

Ignore cuts through 3 charm quarks

CANONICAL FORM

Henn, Rev. Lett. 110 (2013) 251601

Find rational transformation $\mathbb{T}(u, \rho; \epsilon)$

Libra, R.N. Lee, Comput. Phys. Commun. 267 (2021) 108058

$$\begin{split} &\frac{\partial \vec{I}}{\partial \rho} = \hat{M}_{\rho}(\hat{q}^2, \rho, \epsilon) \, \vec{I}(\hat{q}^2, \rho, \epsilon) \\ &\frac{\partial \vec{I}}{\partial \hat{q}^2} = \hat{M}_{q^2}(\hat{q}^2, \rho, \epsilon) \, \vec{I}(\hat{q}^2, \rho, \epsilon) \end{split}$$

Analytic solution expressed via Generalised Polylogarithms

 $\vec{I} = \mathbb{T}\vec{I}'$

$$G(a_1, ..., a_n; z) =$$

$$\int_{0}^{z} \frac{dt}{t - a_{1}} G(a_{2}, \dots, a_{n}; t)$$

.

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{d}{t - t} dt$$

Examples

$$G(0;z) = \log(z) \qquad \qquad G(x,z) = \log\left(1 - \frac{z}{x}\right)$$
$$G(0,\dots,0;z) = \frac{\log^n(z)}{n!} \qquad \qquad G(0,\dots,0,x,z) = -\operatorname{Li}_n\left(\frac{z}{x}\right)$$

 $\frac{dt}{-a_1}G(a_2,\ldots,a_n;t)$

Fast numerical evaluation: GiNaC+PolyLogTools

http://www.ginac.de Duhr, Dulat, JHEP 08 (2019) 135

$$G\left(x, \frac{1+x^2}{x}, x, \frac{1}{x}; z\right)\Big|_{x=1/2, z=1/3} = 0.00151860208899279...$$

BOUNDARY CONDITIONS

NEW: NNLO CORRECTIONS Q2 SPECTRUM MF, Herren, JHEP 05 (2024) 287

Unfortunate choice of $\overline{m}_c(2 \,\text{GeV})$

8

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D , r_E and r_G with reduced uncertainty. No major shift in $|V_{cb}|$.

Much better $\overline{m}_c(3 \,\text{GeV})$

NNLO CORRECTIONS TO TAUONIC MODE AND R(X)

 $\Gamma_{B \to X \ell_1 \bar{\nu}_1}$ $\Gamma_{B \to X \ell_2 \bar{\nu}_{l_2}}$ $K(X_{\ell_1/\ell_2})$

$$R(X_c) = 0.241 \left[1 - 0.156 \frac{\alpha_s}{\pi} - 1.766 \left(\frac{\alpha_s}{\pi} \right)^2 \right]$$
$$R(X_c) \Big|_{q^2 > 6 \,\text{GeV}^2} = 0.350 \left[1 - 0.782 \frac{\alpha_s}{\pi} - 8.355 \left(\frac{\alpha_s}{\pi} \right)^2 \right]$$

MF, Herren, JHEP 05 (2024) 287

Enrichment with q^2 selection cut

$R^{\exp}(X_{e/\mu}) = 1.007 \pm 0.009(\text{stat}) \pm 0.019(\text{syst})$ Belle II, Phys.Rev.Lett. 131 (2023) 5, 051804 $R^{\exp}(X_{\tau/l}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$ Belle II, hep-ex/2311.07248 $R^{\text{SM}}(X_{\tau/l}) = 0.225 \pm 0.005$

Rahimi, Vos. JHEP 11 (2022) 007 Ligeti, Luke, Tackmann, Phys. Rev. D 105, 073009 (2022)

COMMENTS ON THE IMPLEMENTATION IN KOLYA

$$\frac{d\Gamma}{d\hat{q}^2} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[F_0(\rho, \hat{q}^2) + \frac{\alpha_s}{\pi} F_1(\rho, \hat{q}^2) + \left(\frac{1}{2} \frac{1}{2}$$

- ► Fast numerical implementation, but not that fast...
- ► Needs to integrate the differential rate

$$Q_n^{(2)}(\hat{q}_{\text{cut}}^2) = \int_{\hat{q}^2} \hat{q}_{\text{cut}}^2$$

Cannot be performed on-the-fly, e.g. during a fit

 $\rho = m_c/m_b \quad \hat{q}^2 = q^2/m_b^2$

 $\left(\frac{\alpha_s}{\pi}\right)^2 F_2(\rho, \hat{q}^2)$

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; z) dt$$

 $(\hat{q}^2)^n F_2(\rho, \hat{q}^2) d\hat{q}^2$

 $> \hat{q}_{cut}^2$

IMPLEMENTATION

Chebyshev interpolation grids for QCD corrections to the moments

$$Q_n^{(2)}(\hat{q}_{\text{cut}}^2) = \int_{\hat{q}^2 > \hat{q}_{\text{cut}}^2} (\hat{q}^2)^n F_2(\rho, \hat{q}^2) \, d\hat{q}^2$$

Use Numba for fast numerical evaluation https://numba.pydata.org $\hat{q}^2_{
m cut}$

Checks in 100 random points: agreement better than 10⁻⁵

 $\rho = m_c/m_b \quad \hat{q}^2 = q^2/m_b^2$

REVISITING NNLO CORRECTIONS TO E_l moments

- > Feynman integrals depend on two scales: $\rho = m_c/m_b$ and E_l .
- ► At NLO there are 9 master integrals.
- > Perfect numerical agreement with integration of differential rate.

Aquila, Gambino, Ridolfi, Uraltsev, Nucl. Phys. B 719 (2005) 77

MF, Herren, Schönwald, work in progress

M. Fael | Challenges in Semileptonic B Decays | Sept. 25 2024

$$\rightarrow \quad \langle E_l^n \rangle_{E_{\text{cut}}} = \int_{E_l > E_{\text{cut}}} (E_l)^n \frac{d\Gamma}{dE_l} dE_l$$

Third order corrections to $\Gamma(B \rightarrow X_u l \bar{\nu}_l)$

MF, Usovitsch, Phys.Rev.D 108 (2023) 11, 11

Czakon, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser, JHEP 04 (2015) 168

Misiak, Rehman, Steinhauser, JHEP 06 (2020) 175 MF, Lange, Schönwald, Steinhauser, JHEP 11 (2023) 166

Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehman, Schönwald, Steinhauser, Eur.Phys.J.C 83 (2023) 12, 1108

Gambino, Misiak, hep-ph/0104034, Gambino, Giordano, hep-ph/0805.0271, Alberti, et al, hep-ph/1411.6560

 $\operatorname{Br}(B \to X_{S}\gamma)_{E_{\gamma} > E_{0}} = \tau_{B} \Gamma(B \to X_{S}\gamma)_{E_{\gamma} > E_{0}}$

Significant source of uncertainty

 $C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma(B \to X_c l \bar{\nu}_l)}{\Gamma(B \to X_u l \bar{\nu}_l)}$ $= 0.568 \pm 0.007_{\text{par}} \pm 0.010_{\text{h.o.}} (2.1\%)$

Gambino, Misiak, hep-ph/0104034, Gambino, Giordano, hep-ph/0805.0271, Alberti, et al, hep-ph/1411.6560

Significant source of uncertainty $\succ B \rightarrow X_{c}\gamma$ $\succ B \rightarrow X_{\rm c} l \bar{l}$ $- \simeq \frac{\left[1 + \lambda^2 (2\bar{\rho} - 1) + O(\lambda^4)\right] |V_{cb}|^2}{|V_{cb}|^2}$ $= (0.965 \pm 0.001)$ $\operatorname{Br}(B \to X_{s}\gamma)_{E_{\gamma} > E_{0}} = \tau_{B} \Gamma(B \to X_{c} l \bar{\nu}_{l}) \frac{\Gamma(B \to X_{s}\gamma)_{E_{\gamma} > E_{0}}}{\Gamma(B \to X_{c} l \bar{\nu}_{l})}$

 $C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma(B \to X_c l \bar{\nu}_l)}{\Gamma(B \to X_u l \bar{\nu}_l)}$ $= 0.568 \pm 0.007_{\text{par}} \pm 0.010_{\text{h.o.}} (2.1)$

Gambino, Misiak, hep-ph/0104034, Gambino, Giordano, hep-ph/0805.0271, Alberti, et al, hep-ph/1411.6560

 $\operatorname{Br}(B \to X_{s}\gamma)_{E_{\gamma} > E_{0}} = \tau_{B} \Gamma(B \to X_{c} l \bar{\nu}_{l}) \left(\frac{|V_{cb}|^{2} \Gamma(B \to X_{u} l \bar{\nu}_{l})}{|V_{ub}|^{2} \Gamma(B \to X_{c} l \bar{\nu}_{l})} \right) \frac{\Gamma(B \to X_{s}\gamma)_{E_{\gamma} > E_{0}}}{|V_{cb}|^{2} \Gamma(B \to X_{u} l \bar{\nu}_{l})}$

Significant source of uncertainty

$$\succ B \to X_s \gamma$$
%)
$$\succ B \to X_s l\bar{l}$$

 $C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma(B \to X_c l \bar{\nu}_l)}{\Gamma(B \to X_u l \bar{\nu}_l)}$ $= 0.568 \pm 0.007_{\text{par}} \pm 0.010_{\text{h.o.}} (2.1\%)$

Gambino, Misiak, hep-ph/0104034, Gambino, Giordano, hep-ph/0805.0271, Alberti, et al, hep-ph/1411.6560

 $-\operatorname{Br}^{\operatorname{exp}}(B \to X_c l \bar{\nu}_l)$

Normalisation factor: up to N3LO?

M. Fael | Challenges in Semileptonic B Decays | Sept. 25 2024

 $\operatorname{Br}(B \to X_s \gamma)_{E_{\gamma} > E_0}$

Significant source of uncertainty

$$\succ B \to X_{s}\gamma$$
%)
$$\succ B \to X_{s}l\bar{l}$$

$$\frac{V_{ts}^{\star}V_{tb}|^{2} \simeq [1 + \lambda^{2}(2\bar{\rho} - 1) + O(\lambda^{4})] |V_{cb}|^{2}}{\left(V_{cb}^{\star} V_{tb} \right)^{2} + \frac{V_{cb}^{\star}V_{cb}}{V_{cb}} \left| \frac{2}{\pi} \frac{6\alpha_{em}}{\pi} \left[1 + \delta_{NP} \right] P(E_{0}) \right|^{2} + \frac{1}{2} \frac{1}{2} \frac{6\alpha_{em}}{\pi} \left[1 + \delta_{NP} \right] P(E_{0}) \right|^{2}}{\left(V_{cb}^{\star} V_{cb} \right)^{2} + \frac{1}{2} \frac{1}{2$$

Vub/Vcb EXTRACTION

M. Fael | Challenges in Semileptonic B Decays | Sept. 25 2024

$\succ |V_{cb}/V_{ub}|^2 \simeq 100$

Strong experimental cuts to suppress $b \rightarrow c$ contamination

First Belle extraction of $|V_{ub}|/|V_{cb}|$

Belle collaboration: 2311.00458 [hep-ex]

$$\frac{\Delta \mathscr{B}(B \to X_u l \bar{\nu}_l)}{\Delta \mathscr{B}(B \to X_c l \bar{\nu}_l)} = 0.0196 \left(1 \pm 8.4\%_{\text{stat}} \pm 7.9\%_{\text{syst}}\right)$$
$$\frac{|V_{ub}|}{|V_{cb}|}^{\text{GGOU}} = 0.0996 \left(1 \pm 4.2\%_{\text{stat}} \pm 3.9\%_{\text{syst}}\right)$$
$$\pm 2.3\%_{\Delta\Gamma(B \to X_u l \nu)} \pm 2.0\%_{\Delta\Gamma(B \to X_c l \nu)}$$

about 80% of the phase space

THEORETICAL UNCERTAINTY OF THE TOTAL RATE

Equal mass expansion $\delta = 1 - m_c/m_b \ll 1$ 0 -100 $C_F X_3$ δ^{10} -200 $- \delta^{11}$ -300 $-\delta^{12}$ -400 0.10.20.30.40.50.0 $\rho = m_c/m_b$ $C_F X_3(\rho = 0) = -269 \pm 27 \,(10\%)$

 $\Gamma_{\rm sl} = \frac{G_F^2 m_b^5 A_{\rm ew}}{192\pi^3} |V_{qb}|^2 \left(X_0(\rho) + C_F \sum \left(\frac{\alpha_s}{\pi} \right)^n X_n(\rho) \right)$

with $\rho = m_q/m_b$

 $C_F X_3(\rho = 0.28) = -91.2 \pm 0.4 (0.4\%)$

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 016003

 $\delta\Gamma(B \to X_c l \bar{\nu}_l) = 1.2\%$

Bordone, Capdevila, Gambino, Phys.Lett.B 822 (2021) 136679

→ $27 \times \left(\frac{\alpha_s(m_b)}{\pi}\right)^3 = 1\%$

IBP REDUCTION AT 5 LOOPS

Challenging 5loop families: 12 propagators + 8 numerators

Map 5-loop families into 4-loop ones

Trade electron-neutrino loop for a denominator raised to a symbolic power

$$\frac{p^{\mu_1} \dots p^{\mu_N}}{p^2)[-(p-q)^2]} = \frac{i\pi^{2-\epsilon}}{(-q^2)^{\epsilon}} \sum_{i=0}^{[N/2]} f(\epsilon, i, N) \left(\frac{q^2}{2}\right)^i \{[g]^i [q]^{N-2i}\}$$

$$f_5(n_1, n_2, \dots, n_{20}) \leftrightarrow \sum_{\overrightarrow{m} \in M} f_{\overrightarrow{m}}(\epsilon) J_{4\epsilon}(m_1, m_2, \dots, m_{14})$$

Use Kira with: **symbolic_ibp: [1]**

Klappert, Lange, Maierhöfer, Usovitsch, Comput. Phys. Commun. 266 (2021) 108024 Klappert, Lange, Comput. Phys. Commun. 247 (2020) 106951

ELIMINATE SECTORS WITHOUT CUTS

- Identify non-trivial sectors
- For each family, identify the sectors with a physics cut

- > Set to zero sectors without cuts: **zero_sectors: [1,2,...]**
- Full reduction (up to 5 scalar products) with Kira+FireFly

$$I_5(n_1, n_2, \dots, n_{20}) \leftrightarrow$$

 $\sum f_{\overrightarrow{m}}(\epsilon) J_{4\epsilon}(m_1, m_2, \dots, m_{14})$ $\overrightarrow{m} \in M$

NUMERICAL EVALUATION WITH AMFLOW

► 48 families - 1369 master integrals

AMFLOW: auxiliary family with η

AMFLOW: DEQs solver

► All non-trivial sectors must be included Requires 40 digits of precision

RESULTS

► Poles e^{-3} , e^{-2} , e^{-1} cancel with 37, 35 and 33 digits

 $C_F X_3 = 280.2$ fermionic -536.4 bosonic, large N_c -11.6 (2.7) bosonic, subleading N_c = -267.8 (2.7)

- ► Compatible with previous estimate $C_F X_3(\rho = 0) = -269 \pm 27 (10\%)$
- ► Parallel calculation large-N_C limit Chen, Li, Li, Wang, Wand, Wu, Phys.Rev.D 109 (2024) 7, L071503
- ► Agree with unpublished results for N_L and N_L^2

Long Chen, Xiang Chen, Xin Guan, Yan-Qing Ma, hep-ph/2309.01937

	This work	Ref. [28]	Diffe
$T_F^2 N_L^2$	-6.9195	-6.34 (42)	
$T_F^2 N_H^2$	-1.8768×10^{-2}	$-1.97(42) \times 10^{-2}$	
$T_F^2 N_H N_L$	-1.2881×10^{-2}	$-1.1(1.1) \times 10^{-2}$	
$C_F T_F N_L$	-7.1876	-5.65(55)	
$C_A T_F N_L$	42.717	39.7(2.1)	
$C_F T_F N_H$	2.1098	2.056(64)	
$C_A T_F N_H$	-0.45059	-0.449(18)	

MF, Usovitsch, Phys.Rev.D 108 (2023) 11, 11

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 016003

SHORT DISTANCE MASS (PRELIMINARY)

$$\Gamma(B \to X_u \ell \bar{\nu}_\ell) = \Gamma_0^{\text{pole}} \left[1 - 2.413 \right]$$

Scheme conversion

 $m^{\text{pole}} \rightarrow m^2$

M. Fael | Challenges in Semileptonic B Decays | Sept. 25 2024

 $3\frac{\alpha_s}{\pi} - 21.3\left(\frac{\alpha_s}{\pi}\right)^2 - 267.8(2.7)\left(\frac{\alpha_s}{\pi}\right)^3$

$$f(\mu) + \mu \sum_{n=1}^{\infty} a_n^X(\mu_s/\mu) \left(\frac{\alpha_s(\mu_s)}{\pi}\right)^n$$

SHORT DISTANCE MASS (PRELIMINAR)

 $m_b^{\text{MSR}}(2 \text{ GeV}): \quad \Gamma(B \to X_u \ell \bar{\nu}_\ell) = \Gamma_0^{\text{MSR}} \left[1 + 0.039 \right]$ $m_b^{1\text{S}}: \quad \Gamma(B \to X_u \ell \bar{\nu}_\ell) = \Gamma_0^{1\text{S}} \left[1 - 0.114\epsilon \right]$ $m_b^{\text{kin}}(1 \text{ GeV}): \quad \Gamma(B \to X_u \ell \bar{\nu}_\ell) = \Gamma_0^{\text{kin}} \left[1 - 0.020 \right]_\ell$

 $m_b^{\text{kin}}(1 \text{ GeV}): \quad \Gamma(B \to X_u \ell \bar{\nu}_\ell) = \Gamma_0^{\text{kin}} \left[1 - 0.033 \right]$

M. Fael | Challenges in Semileptonic B Decays | Sept. 25 2024

$$\begin{aligned} \mathbf{Y} \\ \mathbf{x} \\ = 0 \\ assuming m_c = 0 \\ assuming m_c = 0 \\ a_s + 0.019 |_{\alpha_s^2} + 0.010 |_{\alpha_s^3} \\ e - 0.031e^2 + 0.002e^3 \\ a_s - 0.012 |_{\alpha_s^2} + 0.017 |_{\alpha_s^3} \\ a_s - 0.0026 |_{\alpha_s^2} + 0.0095 |_{\alpha_s^3} \end{aligned}$$
 Simplified kinetic mass

CONCLUSIONS

- ► In the last years, the theory of inclusive decays has greatly profited from developments in computational methods for multi-loop integrals.
- \blacktriangleright Complete NNLO corrections to the q^2 spectrum!
- \blacktriangleright Work in progress for the E_1 spectrum
- ► N3LO corrections to $b \rightarrow u l \bar{\nu}_l$ must be scrutinised
 - > Resummation of $\alpha_s^{n+1}\beta_0^n$ terms
 - Understand how subleading renormalons cancel in the kinetic scheme
 - \blacktriangleright We have to keep into account larger theoretical uncertainties in $b \rightarrow u l \bar{\nu}_l$

This research was supported by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 101065445 - PHOBIDE.

