# Quark Hadron Duality Violation

an attempt to exorcise an old demon of the Heavy Quark Expansion Rens Verkade, Maastricht University and Nikhef

Co-authors: T. Mannel, I. S. Milutin and K. K. Vos

arXiv:2407.01473

## Introduction

 Quark Hadron Duality (QHD) allows translation of predictions at the quark level to observables at the hadron level



#### Introduction

 Quark Hadron Duality (QHD) allows translation of predictions at the quark level to observables at the hadron level

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_q e_q^2$$



Ratio of cross section e+ e- as a function of centre of mass energy,

M. Tanabashi et al. (PDG), 2019

• Quark Hadron Duality (QHD) allows translation of predictions at the quark level to observables at the hadron level

4

- Quark Hadron Duality (QHD) allows translation of predictions at the quark level to observables at the hadron level
- QHD lies at the heart of the Operator Product Expansion (OPE)



- Quark Hadron Duality (QHD) allows translation of predictions at the quark level to observables at the hadron level
- QHD lies at the heart of the Operator Product Expansion (OPE)
- In the quest of sub-percent  $|V_{cb}|$  precision QHD Violation (QHDV) might become the limiting factor



- Quark Hadron Duality (QHD) allows translation of predictions at the quark level to observables at the hadron level
- QHD lies at the heart of the Operator Product Expansion (OPE)
- In the quest of sub-percent  $|V_{cb}|$  precision QHD Violation (QHDV) might become the limiting factor
- Develop a model of QHDV in the context of the Heavy Quark Expansion (HQE)



- Quark Hadron Duality (QHD) allows translation of predictions at the quark level to observables at the hadron level
- QHD lies at the heart of the Operator Product Expansion (OPE)
- In the quest of sub-percent  $|V_{cb}|$  precision QHD Violation (QHDV) might become the limiting factor
- Develop a model of QHDV in the context of the Heavy Quark Expansion (HQE)
  - Apply our model to observables of Semi-leptonic inclusive B decays

 $\rightarrow \overline{X_c} \ \ell \ \overline{\nu}$ 

B

• Asymptotic behaviour of the OPE expansion in  $\frac{\Lambda_{QCD}}{Q}$  resulting in a non-converging series (like the perturbative case)



1997 **- 1**997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997



- Asymptotic behaviour of the OPE expansion in  $\frac{\Lambda_{QCD}}{Q}$  resulting in a non-converging series (like the perturbative case)
- For example due to Instanton contributions, with ω inverse instanton size

 $\Pi(\tilde{Q}^2) \sim \exp\left(-\frac{1}{\omega}\sqrt{\tilde{Q}^2}\right)$ 

 $\tilde{Q}^2 = -\tilde{q}^2$ 

- Asymptotic behaviour of the OPE expansion in  $\frac{\Lambda_{QCD}}{Q}$  resulting in a non-converging series (like the perturbative case)
- For example due to Instanton contributions, with ω inverse instanton size
- Cannot be expanded in  $\frac{1}{\tilde{Q}^2}$  but are suppressed
  - Would induce factorial growth of HQE coefficients

11

 $\Pi(\tilde{Q}^2) \sim \exp\left(-\frac{1}{\omega}\sqrt{\tilde{Q}^2}\right)$ 

 $\tilde{Q}^2 = -\tilde{g}^2$ 

Function with factorial growth
 Only converges if a<sub>2n</sub> suppresses
 the factorial

 $\infty$  $F(\lambda) = \sum a_{2n} (2n)! (\lambda^2)^n$ n=0

12

- Function with factorial growth
   Only converges if a<sub>2n</sub> suppresses
   the factorial
- Borel Transform to kill the factorial

 $\infty$  $F(\lambda) = \sum a_{2n} (2n)! (\lambda^2)^n$ n=0 $\infty$  $B[F](M) = \sum a_{2n} M^{2n}$ n=0

- Function with factorial growth
   Only converges if a<sub>2n</sub> suppresses
   the factorial
- Borel Transform to kill the factorial

 $F(\lambda) = \sum a_{2n} (2n)! (\lambda^2)^n$ n=0 $B[F](M) = \sum a_{2n} M^{2n}$ n=0

Inverse Borel to re-obtain
the function



• Asymptotic function!

 $a_{2n} = 1$ 

- $\tilde{B}[F](M) = \sum_{n=0}^{\infty} M^{2n} = \frac{1}{1-M^2} = \frac{1}{1+M} \frac{1}{1-M}$
- One has to deal with the poles



• Asymptotic function!  $a_{2n} = 1$ 

$$\tilde{B}[F](M) = \sum_{n=0}^{\infty} M^{2n} = \frac{1}{1-M^2} = \frac{1}{1+M} \frac{1}{1-M}$$

- One has to deal with the poles
- Choice introduces an ambiguity





• Asymptotic function!  $a_{2n} = 1$ 

$$\tilde{B}[F](M) = \sum_{n=0}^{\infty} M^{2n} = \frac{1}{1-M^2} = \frac{1}{1+M} \frac{1}{1-M}$$

- One has to deal with the poles
- Choice introduces an ambiguity



 $\frac{1}{1-M+i\epsilon} - \frac{1}{1-M-i\epsilon} = 2i\pi\delta(1-M)$ 

17

We identify this ambiguity with QHDV

• Asymptotic function!  $a_{2n} = 1$ 

$$\tilde{B}[F](M) = \sum_{n=0}^{\infty} M^{2n} = \frac{1}{1-M^2} = \frac{1}{1+M} \frac{1}{1-M}$$

- One has to deal with the poles
- Choice introduces an ambiguity



We identify this ambiguity with QHDV

 $\left|\frac{1}{1-M+i\epsilon} - \frac{1}{1-M-i\epsilon} \right| = 2i\pi\delta(1-M)$ 

Why does this identification make sense?

#### Illustrative example

• Example fourier transform

$$f(Q) = \int_{0}^{\infty} \frac{1}{x^2 + r^2} e^{iQx} dx$$
$$x = \pm ir$$

• Singularity

Chibisov et al. 1996 hep-ph/9605465

19

#### Illustrative example

• Example fourier transform

$$f(Q) = \int_{0}^{\infty} \frac{1}{x^2 + r^2} e^{iQx} dx$$
$$x = \pm ir$$

- Singularity
- Exact solution

$$f(Q) = \frac{\pi}{2r}e^{-Qr} + \frac{1}{2r}\left[e^{-Qr}\overline{\operatorname{Ei}}(Qr) - e^{Q\rho}\operatorname{Ei}(-Qr)\right]$$

Chibisov et al. 1996 hep-ph/9605465

20

#### Illustrative example

Example fourier transform 

$$f(Q) = \int_{0}^{\infty} \frac{1}{x^2 + r^2} e^{iQx} dx$$
$$x = \pm ir$$

- Singularity igodol
- Exact solution  $\bullet$

Exact solution 
$$f(Q) = \frac{\pi}{2r}e^{-Qr} + \frac{1}{2r}\left[e^{-Qr}\overline{\text{Ei}}(Qr) - e^{Q\rho}\overline{\text{Ei}}(-Qr)\right]$$
Naive expansion is missing the exponential term 
$$f(Q) = \frac{i}{r}\sum_{k=0}^{\infty}\frac{(2k)!}{(Qr)^{2k+1}}$$
Chibisov et al. 1996.

hep-ph/9605465

• Ambiguity as DV

 $\frac{1}{1-M+i\epsilon} - \frac{1}{1-M-i\epsilon} = 2i\pi\delta(1-M)$ 

22

• Ambiguity as DV

$$\frac{1}{1 - i\epsilon} - \frac{1}{1 - M - i\epsilon} = 2i\pi\delta(1 - M)$$

23

• Inserting into the inverse Borel gives us the missing exponential

1 - M +

$$\Delta_{\rm DV} F(\lambda) = 2i\pi \int_{0}^{\infty} dM \, e^{-M} \frac{1}{1+M\lambda} \delta(1-\lambda M) = \frac{i\pi}{\lambda} \exp\left(-\frac{1}{\lambda}\right)$$

1 - M

• Ambiguity as DV

$$\frac{1}{+i\epsilon} - \frac{1}{1 - M - i\epsilon} = 2i\pi\delta(1 - M)$$

• Inserting into the inverse Borel gives us the missing exponential

$$\Delta_{\rm DV} F(\lambda) = 2i\pi \int_{0}^{\infty} dM \, e^{-M} \frac{1}{1+M\lambda} \delta(1-\lambda M) = \frac{i\pi}{\lambda} \exp\left(-\frac{1}{\lambda}\right)$$

Now let's turn to the use case of the HQE...

 $Q = m_b v - q$  $v = p/M_B$ 

## Setting up the HQE

 Differential rate from leptonic tensor and hadronic correlation function via optical theorem

 $d\Gamma \propto L^{\mu\nu} \text{Im}[T_{\mu\nu}(vQ,Q^2)]$ 

25

 $T_{\mu\nu}(vQ,Q^2) = \int \mathrm{d}^4x \, e^{-iQ\cdot x} \langle B(p) | T\{\bar{b}_v(x)\Gamma_\mu c(x) \, \bar{c}(0)\overline{\Gamma}_\nu b_v(0)\} | B(p) \rangle$ 

 $Q = m_b v - q$  $v = p/M_B$ 

# Setting up the HQE

 Differential rate from leptonic tensor and hadronic correlation function via optical theorem

 $d\Gamma \propto L^{\mu\nu} \text{Im}[T_{\mu\nu}(vQ,Q^2)]$ 

$$T_{\mu\nu}(vQ,Q^2) = \int \mathrm{d}^4x \, e^{-iQ\cdot x} \langle B(p) | T\{\bar{b}_v(x)\Gamma_\mu c(x)\,\bar{c}(0)\overline{\Gamma}_\nu b_v(0)\} | B(p) \rangle$$

• Decompose in 5 scalar functions

$$T_{\mu\nu}(vQ,Q^{2}) = T_{1}\left(g_{\mu\nu} + \frac{Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu} - i\epsilon_{\mu\nu\alpha\beta}Q^{\alpha}v^{\beta}}{vQ}\right) - T_{2}g_{\mu\nu} + T_{3}v_{\mu}v_{\nu} + T_{4}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{5}\frac{Q_{\mu}Q_{\nu}}{(vQ)^{2}} - T_{1}g_{\mu\nu} + T_{3}v_{\mu}v_{\nu} + T_{4}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{5}\frac{Q_{\mu}Q_{\nu}}{(vQ)^{2}} - T_{1}g_{\mu\nu} + T_{2}v_{\mu}v_{\nu} + T_{4}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{5}\frac{Q_{\mu}Q_{\nu}}{(vQ)^{2}} - T_{1}g_{\mu\nu} + T_{1}v_{\mu}v_{\nu} + T_{4}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{5}\frac{Q_{\mu}Q_{\nu}}{(vQ)^{2}} - T_{1}g_{\mu\nu} + T_{1}v_{\mu}v_{\nu} + T_{2}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{5}\frac{Q_{\mu}Q_{\nu}}{(vQ)^{2}} - T_{1}g_{\mu\nu} + T_{2}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{2}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{5}\frac{Q_{\mu}Q_{\nu}}{(vQ)^{2}} - T_{1}g_{\mu\nu} + T_{2}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{5}\frac{Q_{\mu}Q_{\nu}}{(vQ)^{2}} - T_{1}g_{\mu\nu} + T_{1}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{1}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{1}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{2}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} - T_{1}\frac{(Q_{\mu}v_{\nu} + Q_{\nu}v_{\mu})}{vQ} + T_{2}\frac{(Q_{\mu}v_{\nu} + Q_{\mu}v_{\mu})}{vQ} + T_{2}\frac{(Q_{\mu}v_{\mu} + Q_{\mu}v_{\mu})}{vQ} + T_{2}\frac{(Q_{\mu}$$

 $Q = m_b v - q$  $v = p/M_B$ 

## Setting up the HQE

 Differential rate from leptonic tensor and hadronic correlation function via optical theorem

 $d\Gamma \propto L^{\mu\nu} \text{Im}[T_{\mu\nu}(vQ,Q^2)]$ 

27

$$T_{\mu\nu}(vQ,Q^2) = \int \mathrm{d}^4x \, e^{-iQ\cdot x} \langle B(p) | T\{\bar{b}_v(x)\Gamma_\mu c(x)\,\bar{c}(0)\overline{\Gamma}_\nu b_v(0)\} | B(p) \rangle$$

• Obtained by taking the forward matrix element

$$T_{\mu\nu}(Q) = \sum_{k=0}^{\infty} \left(\frac{1}{Q^2}\right)^{k+1} \langle B(v) | \bar{b}_v \Gamma_\mu \ \mathscr{Q}[-(i \ \mathcal{D}) \ \mathscr{Q}]^k \overline{\Gamma}_\nu b_v(0) | B(v) \rangle$$

# Setting up the HQE

• Scalar Hadronic Structure functions

$$T_{i}(t,Q^{2}) = \frac{1}{\Lambda_{HQE}} \sum_{l=0}^{\infty} \left(\frac{\Lambda_{HQE}^{2}}{Q^{2}}\right)^{l+1} P_{l}^{(i)}(t)$$
$$P_{l}^{(i)}(t) = \sum_{n=0}^{l+1} t^{l+1-n} a_{n}^{(i,n+l)}$$



# Setting up the HQE

• Scalar Hadronic Structure functions

$$T_{i}(t,Q^{2}) = \frac{1}{\Lambda_{HQE}} \sum_{l=0}^{\infty} \left(\frac{\Lambda_{HQE}^{2}}{Q^{2}}\right)^{l+1} P_{l}^{(i)}(t)$$
$$P_{l}^{(i)}(t) = \sum_{n=0}^{l+1} t^{l+1-n} a_{n}^{(i,n+l)}$$

 $a_n^{(i,n+l)}$  can in principle be calculated from HQE parameters

• Factor out the expected factorial growth

 $P_l^{(i)}(t) = (2l)! \sum_{n=0}^{l+1} t^{l+1-n} b_n^{(i,n+l)}$ 

30

• Factor out the expected factorial growth

$$P_l^{(i)}(t) = (2l)! \sum_{n=0}^{l+1} t^{l+1-n} b_n^{(i,n+l)}$$

• If purely factorial

 $b_{0}^{(i,0+l)} \sim \overline{b_{1}^{(i,1+l)}} \sim \overline{b_{n}^{(i,n+l)}}$ 





 Factor out the expected factorial growth

$$P_l^{(i)}(t) = (2l)! \sum_{n=0}^{l+1} t^{l+1-n} b_n^{(i,n+l)}$$

• If purely factorial

$$b_0^{(i,0+l)} \sim b_1^{(i,1+l)} \sim b_n^{(i,n+l)}$$

- For the model we assume  $b_n^{(i,n+l)} \sim 1$  , except coefficients missing from the HQE i.e.

$$b_n^{(i,n+l)} = a_n^{(i,n+l)}/(2l)!$$

 Model ansatz polynomials based on the HQE parameters\*  $P_l^{(1,4)}(t) = (2l)! \sum_{m=1}^{l+1} t^m = (2l)! \frac{t-t+2}{1-t}$ 

33

\* Similar models for P 2,3 and 5

- Model ansatz polynomials based on the HQE parameters\*
- Model scalar hadronic structure functions

$$T_{1,4}(t,\lambda^2) = \frac{1}{\Lambda_{HQE}} \frac{t\lambda^2}{1-t} \left( F_1(\lambda) - tF_2(\lambda) \right) \qquad \lambda \equiv \frac{\Lambda_{HQE}}{\sqrt{Q^2}}$$

$$F_1(\lambda) = \sum_{l=0}^{\infty} (2l)! (\lambda^2)^l \qquad F_2(\lambda) = \sum_{l=0}^{\infty} (2l)! (t\lambda^2)^l \quad F_2(\lambda) = \sum_{l=0}^{\infty} (2l)! (t\lambda^2)^{l} \quad F_2(\lambda) = \sum_{l=0}^{\infty} (2l)! (t\lambda^2)! (t$$

l+1

m=1

 $P_l^{(1,4)}(t) = (2l)! \sum t^m = (2l)! - \frac{t}{2}$ 

\* Similar models for P 2,3 and 5

• Use optical theorem to obtain DV contribution to hadronic tensor

$$\hat{\Delta}_{\rm DV} W_{1,4}(vQ,Q^2) = -\frac{1}{\pi} \hat{\Delta}_{\rm DV} {\rm Im} \left[ T_{1,4}(vQ,Q^2) \right] = \frac{1}{\Lambda_{HQE} - vQ} \frac{vQ}{\sqrt{Q^2}} \left( \sin \left( \frac{\sqrt{Q^2}}{\Lambda_{HQE}} \right) - \sqrt{\frac{vQ}{\Lambda_{HQE}}} \sin \left( \frac{1}{\sqrt{\Lambda_{HQE}}} \sqrt{\frac{Q^2}{vQ}} \right) \right)$$

• OPE + DV model  $W_i \rightarrow \overline{W_i^{(OPE)}} + 0.25 \, \mathcal{C}_{\mathrm{DV}} \hat{\Delta}_{\mathrm{DV}} W_i(s, \hat{q}^2, \Lambda_{HQE})$ 

36
- OPE + DV model  $W_i \rightarrow W_i^{(\mathrm{OPE})} + 0.25 \, \mathcal{C}_{\mathrm{DV}} \hat{\Delta}_{\mathrm{DV}} W_i(s, \hat{q}^2, \Lambda_{HQE})$
- Default scale choice

 $\Lambda_{HQE} = 0.5 \,\mathrm{GeV}$ 

- OPE + DV model  $W_i 
  ightarrow W_i^{
  m (OPE)} + 0.25 \, {\cal C}_{
  m DV} \hat{\Delta}_{
  m DV} W_i(s, \hat{q}^2, \Lambda_{HQE})$
- Default scale choice

 $\Lambda_{HQE} = 0.5 \,\mathrm{GeV}$ 

 Normalised so that partonic and DV contributions are equal for C<sub>DV</sub>=1 (= 100% Duality Violation)

 $\frac{1}{\Gamma_0} = 0.657 + 0.657 \mathcal{C}_{\rm DV} - 0.025|_{m_b^2} - 0.026|_{m_b^3} + 0.0003|_{m_b^4} + 0.007|_{m_b^5}$   $m_c = 1.092 \,{\rm GeV} \ m_b = 4.573 \,{\rm GeV}$ LLSA: arXiv:1407.4384

## q<sup>2</sup> moments

- Non centralised q<sup>2</sup> moments
- DV most pronounced at low cut
- DV cut dependance differs slightly from power corrections
- Higher moments show a similar picture (see backup slides)

 $Q_n(q_{\rm cut}^2) \equiv \frac{1}{\Gamma_0} \int_{q_{\rm cut}^2} \mathrm{d}q^2 \, (q^2)^n \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$  $\bar{q}_n \equiv \langle (q^2)^n \rangle_{q^2 \ge q_{\text{cut}}^2} \equiv \frac{Q_n(q_{\text{cut}}^2)}{Q_0(q_{\text{cut}}^2)}$ 



cut q<sup>2</sup> moments using LLSA values with DV contribution for  $\Lambda_{HQE}$  =0.5 GeV and  $C_{DV}$  = 0.1

## Lepton energy moments

- Non centralised moments
- DV most pronounced at low cut
- DV cut dependance does not differ significantly from power corrections
- Higher moments show a similar picture (see backup slides)
- DV may be difficult to disentangle from power corrections



 $L_n(E_\ell^{\text{cut}}) \equiv \frac{1}{\Gamma_0} \int_{E_\ell^{\text{cut}}} \mathrm{d}E_\ell \, E_\ell^n \, \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell}$ 

 $\bar{\ell}_n \equiv \langle E_\ell^n \rangle_{E_\ell > E_\ell^{\rm cut}} \equiv \frac{L_n(E_\ell)}{L_\ell}$ 

Cut lepton energy moments using LLSA values with DV contribution for  $\Lambda_{HQE}$  =0.5 GeV and  $C_{DV}$  = 0.1

#### **DV** sensitive observables

• q<sup>2</sup> moment decomposition

$$ar{q}_i = C_i^{(0)} + rac{\mu_G^2}{m_b^2} C_i^{(2)} + rac{ ilde{
ho}_D^3}{m_b^3} C_i^{(3)} + R_i \ R_i = R_{DV} + \sum_{n=0}^{\infty} R_{m_b^{4+n}}$$

#### **DV** sensitive observables

- q<sup>2</sup> moment decomposition
- Construct observables depending only on R<sub>i</sub> by cancelling lower order contributions

$$O_{\rm DV}^{(3)} = \xi_1 \frac{\bar{q}_1}{m_b^2} + \xi_2 \frac{\bar{q}_2}{m_b^4} + \xi_3 \frac{\bar{q}_3}{m_b^6} + \xi_4 \frac{\bar{q}_4}{m_b^6}$$

 $\xi_{(2..4)}(q_{cut}^2,\xi_1)$ 

 $R_i = R_{DV} + \sum R_{m_h^{4+n}}$ 

 $\bar{q}_i = C_i^{(0)} + \frac{\mu_G^2}{m_h^2} C_i^{(2)} + \frac{\tilde{\rho}_D^3}{m_h^3} C_i^{(3)} + R_i$ 

#### **DV** sensitive observables

- q<sup>2</sup> moment decomposition
- Construct observables depending only on R<sub>i</sub> by cancelling lower order contributions

$$O_{\rm DV}^{(3)} = \xi_1 \frac{\bar{q}_1}{m_b^2} + \xi_2 \frac{\bar{q}_2}{m_b^4} + \xi_3 \frac{\bar{q}_3}{m_b^6} + \xi_4 \frac{\bar{q}_3}{m_b^6}$$

 $\xi_{(2..4)}(q_{cut}^2,\xi_1)$ 

43

 $O_{\rm DV}^{(k)} \sim \Lambda_{HOE}^{k+1} / m_n^{k+1}$ 

 $R_i = R_{DV} + \sum R_{m_h^{4+n}}$ 

 $\bar{q}_i = C_i^{(0)} + \frac{\mu_G^2}{m_h^2} C_i^{(2)} + \frac{\tilde{\rho}_D^3}{m_h^3} C_i^{(3)} + R_i$ 

No contribution from lower orders HQE

Data used from Belle collaboration, 2021 arxiv 2109.01685

## **QHDV from Belle data**

• q<sup>2</sup> moment data from Belle electron channel (2021)



*O<sub>DV</sub>* (q<sup>2</sup><sub>cut</sub>) obtained from Belle data compared to theory and model predictions

Data used from Belle collaboration, 2021 arxiv 2109.01685

#### **QHDV from Belle data**

 q<sup>2</sup> moment data from Belle electron channel (2021)

 Comparison with theory (LLSA)

$$O_{\rm DV}^{(3)} = (5.182 \ \mathcal{C}_{\rm DV} - 0.546|_{m_b^4} + 0.519|_{m_b^5}) \times 10^{-3}$$
$$(q_{\rm cut}^2 = 3.0 \ {\rm GeV}^2)$$

LLSA: arXiv:1407.4384



*O<sub>DV</sub>* (q<sup>2</sup><sub>cut</sub>) obtained from Belle data compared to theory and model predictions

#### **QHDV from Belle data**

 Determine C<sub>DV</sub> from data using LLSA values

- $C_{\rm DV} = -0.10 \pm 0.11$   $C_{\rm DV} = -0.16 \pm 0.17$  $C_{\rm DV} = -0.30 \pm 0.30$
- $(q_{\rm cut}^2 = 3.0 \text{ GeV}^2)$  $(q_{\rm cut}^2 = 4.0 \text{ GeV}^2)$  $(q_{\rm cut}^2 = 5.0 \text{ GeV}^2)$

#### **QHDV from Belle data**

 Determine C<sub>DV</sub> from data using LLSA values

- $\begin{array}{lll} \mathcal{C}_{\rm DV} &= -0.10 \pm 0.11 & (q_{\rm cut}^2 = 3.0 \ {\rm GeV}^2) \\ \mathcal{C}_{\rm DV} &= -0.16 \pm 0.17 & (q_{\rm cut}^2 = 4.0 \ {\rm GeV}^2) \\ \mathcal{C}_{\rm DV} &= -0.30 \pm 0.30 & (q_{\rm cut}^2 = 5.0 \ {\rm GeV}^2) \end{array}$
- Strongest constraint at low cuts
- Results consistent with C<sub>DV</sub> = 0
- ullet Combining different cuts and  $E_\ell$  moments could further constrain

• The HQE is expected to be an asymptotic series, at some point



- The HQE is expected to be an asymptotic series, at some point
- No indications of QHDV in semileptonic inclusive decays



- The HQE is expected to be an asymptotic series, at some point
- No indications of QHDV in semileptonic inclusive decays
- In our quest to sub-percent precision extraction of  $|V_{cb}|$ DV demon might show its face



- The HQE is expected to be an asymptotic series, at some point
- No indications of QHDV in semileptonic inclusive decays
- In our quest to sub-percent precision extraction of  $|V_{cb}|$ DV demon might show its face
- Developed a DV model with 2 parameters
- New DV sensitive observable build from kinetic moments can help constraint DV
  - Procedure could also constraint higher order

- The HQE is expected to be an asymptotic series, at some point
- No indications of QHDV in semileptonic inclusive decays
- In our quest to sub-percent precision extraction of  $|V_{cb}|$ DV demon might show its face
- Developed a DV model with 2 parameters
- New DV sensitive observable build from kinetic moments can help constraint DV
  - Procedure could also constraint higher order
- Time for a full fit? .....

# **References presentation**

- B. Chibisov, R. D. Dikeman, M. A. Shifman and N. Uraltsev, Operator product expansion, heavy quarks, QCD duality and its violations, Int. J. Mod. Phys. A 12 (1997) 2075–2133, [hep-ph/9605465]
- Belle collaboration, R. van Tonder et al., Measurements of q 2 Moments of Inclusive B → Xcl +vl Decays with Hadronic Tagging, Phys. Rev. D 104 (2021) 112011, [2109.01685].
- M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update.
  - B. Chibisov, R. D. Dikeman, M. A. Shifman and N. Uraltsev, *Operator product expansion, heavy quarks, QCD duality and its violations*, Int. J. Mod. Phys. A 12 (1997) 2075–2133, [hep-ph/9605465].



•

#### Illustrative example

- Expand at x<sup>2</sup> = 0 to form a kind of "OPE"
- Clearly missing the exponential term

$$f(Q) = \frac{i}{r} \sum_{k=0}^{\infty} \frac{(2k)!}{(Qr)^{2k+1}}$$

 $\pi e^{-Q\rho}$ 

2

 $\frac{f(Q) + f(-Q)}{2} = \frac{1}{2} \int_{-\infty}^{\infty} dx \frac{1}{x^2 + \rho^2} e^{iQx}$ 

 $f(Q) = \int_{0}^{\infty} \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{r^{2k+2}} e^{iQx} dx$ 

- Symmetric combination captures the uncertainty of
  - the expansion coming from the singularity
  - We found the lost exponential!

Chibisov et al. 1996 hep-ph/9605465

- Anzats model polynomials based on the HQE parameters
- Identifying the ambiguity through Borel  $\bullet$ transform
- Use optical theorem to obtain DV contribution to hadronic tensor

$$\hat{\Delta}_{\rm DV} W_{1,4}(vQ,Q^2) = -\frac{1}{\pi} \hat{\Delta}_{\rm DV} {\rm Im} \left[ T_{1,4}(vQ,Q^2) \right] = \frac{1}{\Lambda_{HQE} - vQ} \frac{vQ}{\sqrt{Q^2}} \left( \sin \left( \frac{\sqrt{Q^2}}{\Lambda_{HQE}} \right) - \sqrt{\frac{vQ}{\Lambda_{HQE}}} \sin \left( \frac{1}{\sqrt{\Lambda_{HQE}}} \sqrt{\frac{Q^2}{vQ}} \right) \right)$$
56

 $p_l^{(1,4)}(t) = \sum_{l=1}^{l+1} t^m =$ 

 $\overline{m=1}$ 

 Choose polynomials based on calculating the parameters up to I=5 and 1/mb<sup>5</sup>

 $p_l^{(1,4)}(t) = \sum_{l=1}^{l+1} t^m = \frac{t-t^{l+1}}{1-t}$ m = 1 $p_l^{(2,3)}(t) = \sum_{l=1}^{l} t^m = \frac{1-t^{l+1}}{1-t}$ m=0 $p_0^{(5)}(t) = 0$   $p_{l\geq 1}^{(5)}(t) = \sum_{l=1}^{l+1} t^m$  $\Rightarrow p_{l>0}^{(5)}(t) = \frac{t^2 - t^{l+2}}{1 - t}$ 

$$\begin{split} \hat{\Delta}_{\mathrm{DV}}W_{1,4}(vQ,Q^2) &= -\frac{1}{\pi}\hat{\Delta}_{\mathrm{DV}}\mathrm{Im}\left[T_{1,4}(vQ,Q^2)\right] = \\ &\quad \frac{1}{\Lambda_{HQE} - vQ} \quad \frac{vQ}{\sqrt{Q^2}}\left(\sin\left(\frac{\sqrt{Q^2}}{\Lambda_{HQE}}\right) - \sqrt{\frac{vQ}{\Lambda_{HQE}}}\sin\left(\frac{1}{\sqrt{\Lambda_{HQE}}}\sqrt{\frac{Q^2}{vQ}}\right)\right) \\ \hat{\Delta}_{\mathrm{DV}}W_{2,3}(vQ,Q^2) &= -\frac{1}{\pi}\hat{\Delta}_{\mathrm{DV}}\mathrm{Im}\left[T_{2,3}(vQ,Q^2)\right] = \\ &\quad \frac{1}{\Lambda_{HQE} - vQ} \quad \frac{\Lambda_{HQE}}{\sqrt{Q^2}}\left(\sin\left(\frac{\sqrt{Q^2}}{\Lambda_{HQE}}\right) - \sqrt{\frac{vQ}{\Lambda_{HQE}}}\sin\left(\frac{1}{\sqrt{\Lambda_{HQE}}}\sqrt{\frac{Q^2}{vQ}}\right)\right) \\ \hat{\Delta}_{\mathrm{DV}}W_5(vQ,Q^2) &= -\frac{1}{\pi}\hat{\Delta}_{\mathrm{DV}}\mathrm{Im}\left[T_5(vQ,Q^2)\right] = \\ &\quad \frac{1}{\Lambda_{HQE} - vQ} \quad \frac{(vQ)^2}{\Lambda_{HQE}\sqrt{Q^2}}\left(\sin\left(\frac{\sqrt{Q^2}}{\Lambda_{HQE}}\right) - \sqrt{\frac{\Lambda_{HQE}}{vQ}}\sin\left(\frac{1}{\sqrt{\Lambda_{HQE}}}\sqrt{\frac{Q^2}{vQ}}\right)\right) \end{split}$$

# **Differential rate**

-

$$\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\hat{q}^{2}\mathrm{d}s\mathrm{d}y} = 48m_{b}\Gamma_{0} \left[ \frac{2ys - y^{2} - 2\hat{q}^{2} + y\hat{q}^{2}}{1 - s}W_{1} + \hat{q}^{2}W_{2} + \frac{1}{2}\left(2ys - y^{2} - \hat{q}^{2}\right)W_{3} \right]$$

$$\left. + \frac{2ys - y^2 - \hat{q}^2}{1 - s} W_4 + \frac{2ys - y^2 - \hat{q}^2}{2(1 - s)^2} W_5 \right] \theta\left(\hat{q}^2\right) \theta\left(2ys - y^2 - \hat{q}^2\right)$$

$$\Gamma_0 = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \qquad \hat{q}^2 = \frac{q^2}{m_b^2} \qquad s = \frac{v \cdot q}{m_b} \qquad y = \frac{2E_\ell}{m_b}$$

5<mark>9</mark>

#### Our DV model

• OPE + DV model

$$W_i \to W_i^{(\text{OPE})} + N\hat{\Delta}_{\text{DV}}W_i(s, \hat{q}^2, \Lambda_{HQE})$$

• Scale of HQE chosen by taking the average of the HQE parameters

 $\Lambda_{HQE} = 0.5 \,\mathrm{GeV}$ 

 Normalised so that partonic and DV contributions are equal for C<sub>DV</sub>=1, depends on scale  $N = \frac{\Gamma_{\rm P}}{\Gamma_{\rm DV}} \ \mathcal{C}_{\rm DV} = 0.25 \ C_{\rm DV}$ 

Breakdown of the normalised rate (using LSSA values)

 $\frac{\Gamma}{\Gamma_0} = 0.657 + 0.657 \ \mathcal{C}_{\rm DV} - 0.025|_{m_b^2} - 0.026|_{m_b^3} + 0.0003|_{m_b^4} + 0.007|_{m_b^5}$  $m_c = 1.092 \,\text{GeV} \quad m_b = 4.573 \,\text{GeV}$ 

## Instanton-like contribution

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.0

 $\frac{1}{\Gamma_0} \frac{\mathrm{d}\Gamma}{\mathrm{d}\hat{q}^2}$ 

 Comparison with instanton terms motivates to keep the scale as a free fit parameter

• Choosing a small scale produces the expected 'wiggle' around the OPE

For larger scale the period increases
 beyond the q<sup>2</sup> interval

Differential spectrum up to  $1/mb^2$  with DV for  $\Lambda$  DV =  $10^{-4}$  GeV using N = 0.2508 C<sub>DV</sub>

0.2

0.1

 $1/m_{h}^{2}$ 

0.4

0.5

0.3

 $1/m_h^2 \& C_{\rm DV} = 0.1$ 

#### **Kinematic moments**

• q<sup>2</sup> moments

$$Q_n(q_{\rm cut}^2) \equiv \frac{1}{\Gamma_0} \int_{q^2} \, \mathrm{d}q^2 \, (q^2)^n$$

• Lepton Energy moments

 Normalised and re-expanded in 1/mb and C<sub>DV</sub> neglecting C<sub>DV</sub>/mb terms

$$\begin{split} &I_0 \ J_{q_{\text{cut}}^2} \qquad \text{d}q \\ &L_n(E_\ell^{\text{cut}}) \equiv \frac{1}{\Gamma_0} \int_{E_\ell^{\text{cut}}} \mathrm{d}E_\ell \ E_\ell^n \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \\ &\bar{q}_n \equiv \langle (q^2)^n \rangle_{q^2 \ge q_{\text{cut}}^2} \equiv \frac{Q_n(q_{\text{cut}}^2)}{Q_0(q_{\text{cut}}^2)} \\ &\bar{\ell}_n \equiv \langle E_\ell^n \rangle_{E_\ell \ge E_\ell^{\text{cut}}} \equiv \frac{L_n(E_\ell^{\text{cut}})}{L_0(E_\ell^{\text{cut}})} \end{split}$$

## **Effect of the scale parameter**





# q<sup>2</sup> moments



--- Partonic/10

 $1/m_{h}^{2}$ 

 $1/m_{b}^{3}$ 

 $1/m_{b}^{4}$ 

 $1/m_{b}^{5}$ 

7

---  $C_{\rm DV} = 0.1$ 





#### Lepton energy moments





## Lepton energy moments





| $T_i$ |               |                     |                     |                        |  |  |
|-------|---------------|---------------------|---------------------|------------------------|--|--|
| l = 0 | $b_0^{(i,0)}$ | $b_1^{i,1}$         | -                   | _                      |  |  |
| l = 1 | $b_0^{(i,1)}$ | $b_1^{i,2}$         | $b_2^{i,3}$         | -                      |  |  |
| l=2   | $b_0^{(i,2)}$ | $b_1^{i,3}$         | $b_2^{i,4}$         | $b_3^{i,5}$            |  |  |
| l = 3 | $b_0^{(i,3)}$ | $b_1^{i,4}$         | $b_2^{i,5}$         | $\mathcal{O}(1/m_b^6)$ |  |  |
| l=4   | $b_0^{(i,4)}$ | $b_1^{i,5}$         | ${\cal O}(1/m_b^6)$ | ${\cal O}(1/m_b^6)$    |  |  |
| l=5   | $b_0^{(i,5)}$ | ${\cal O}(1/m_b^6)$ | ${\cal O}(1/m_b^6)$ | $\mathcal{O}(1/m_b^6)$ |  |  |

| $T_1$ |           |        |         |   |  |  |
|-------|-----------|--------|---------|---|--|--|
| l = 0 | -0.5      | 0      | -       | - |  |  |
| l = 1 | 0.032     | -0.265 | 0       | - |  |  |
| l=2   | -0.052    | 0.050  | 0.002   | 0 |  |  |
| l = 3 | -0.003    | 0.001  | -0.0005 | 0 |  |  |
| l=4   | -0.0002   | 0.0004 | O       | 0 |  |  |
| l = 5 | -0.000007 | 0      | 0       | 0 |  |  |

| $T_3$ |   |         |       |       |  |  |
|-------|---|---------|-------|-------|--|--|
| l = 0 | 0 | 0.064   | -     | -     |  |  |
| l = 1 | 0 | -0.620  | 1.119 | -     |  |  |
| l=2   | 0 | -0.086  | 0.154 | 0.015 |  |  |
| l = 3 | 0 | -0.010  | 0.036 | O     |  |  |
| l=4   | 0 | -0.0006 | 0     | O     |  |  |
| l=5   | 0 | O       | O     | О     |  |  |

| $T_2$ |   |         |       |       |  |
|-------|---|---------|-------|-------|--|
| l = 0 | 0 | 0.032   | -     |       |  |
| l = 1 | 0 | -0.310  | 0.570 | =     |  |
| l=2   | 0 | -0.043  | 0.049 | 0.031 |  |
| l = 3 | 0 | -0.005  | 0.017 | 0     |  |
| l = 4 | 0 | -0.0003 | 0     | 0     |  |
| l = 5 | 0 | O       | 0     | 0     |  |

| $T_4$ |         |        |        |   |  |  |
|-------|---------|--------|--------|---|--|--|
| l = 0 | 1       | 0      | -      | - |  |  |
| l = 1 | -0.064  | 0.317  | 0      | - |  |  |
| l=2   | 0.103   | -0.136 | -0.004 | 0 |  |  |
| l = 3 | 0.006   | -0.007 | 0.001  | 0 |  |  |
| l=4   | 0.0003  | -0.001 | O      | 0 |  |  |
| l = 5 | 0.00001 | 0      | 0      | 0 |  |  |

| $T_5$ |         |        |       |   |  |  |
|-------|---------|--------|-------|---|--|--|
| l = 0 | 0       | 0      | -     | - |  |  |
| l = 1 | 0.026   | 0      | 0     | - |  |  |
| l=2   | 0.003   | 0.035  | 0     | 0 |  |  |
| l=3   | 0.0003  | 0.001  | 0.001 | 0 |  |  |
| l=4   | 0.00002 | 0.0002 | O     | 0 |  |  |
| l = 5 | 0       | 0      | 0     | 0 |  |  |

#### **Heavy Quark Expansion**

• Redefinition heavy quark field

$$b(x) = exp(-im_b v \cdot x)b_v(x)$$

• Operator Product Expansion of the Charm Propagator with m\_c=0

$$\frac{1}{\gamma^{\mu}Q_{\mu} + i\gamma^{\mu}D_{\mu}} = \sum_{k=0}^{\infty} \left(\frac{1}{Q^2}\right)^{k+1} \gamma^{\mu}Q_{\mu} \left[-(i\gamma^{\mu}D_{\mu})\gamma^{\mu}Q_{\mu}\right]^{k}$$

## The model in HQE

 $T_{\mu\nu}(Q) = \int d^4x \, e^{-iQ \cdot x} \langle B(p) | T\{\bar{b}_v(x)\Gamma_\mu c(x) \, \bar{c}(0)\overline{\Gamma}_\nu b_v(0)\} | B(p) \rangle$ 

$$\frac{1}{\not Q + i \not D} = \sum_{k=0}^{\infty} \left(\frac{1}{Q^2}\right)^{k+1} \not Q \left[-(i \not D) \not Q\right]^k$$

 $T_{\mu\nu}(Q) = \sum_{k=0}^{\infty} \left(\frac{1}{Q^2}\right)^{k+1} \langle B(v)|\bar{b}_v\Gamma_{\mu} \ \mathscr{Q}[-(i \ \mathcal{D}) \ \mathscr{Q}]^k\overline{\Gamma}_{\nu}b_v(0)|B(v)$ 

# $\langle B(v)|\bar{b}_v\Gamma \ \mathscr{Q}\overline{\Gamma}b_v|B(v)\rangle = a_0^{(i,0)}(vQ)$ $\langle B(v)|\bar{b}_v(-1)\Gamma \ \mathscr{Q}(i \ \mathcal{D}) \ \mathscr{Q}\overline{\Gamma}b_v|B(v)\rangle = \Lambda_{HQE} \left(a_0^{(i,1)}(vQ)^2 + a_1^{(i,1)}Q^2\right)$ $\langle B(v)|\bar{b}_v\Gamma \ \mathscr{Q}(i \ \mathcal{D}) \ \mathscr{Q}(i \ \mathcal{D}) \ \mathscr{Q}\overline{\Gamma}b_v|B(v)\rangle = \Lambda_{HQE}^2 \left(a_0^{(i,2)}(vQ)^3 + a_1^{(i,2)}(vQ)Q^2\right)$
$$T_{1,4}(t,\lambda^2) = \frac{1}{\Lambda_{HQE}} \frac{t\lambda^2}{1-t} \left( F_1(\lambda) - tF_2(\lambda) \right) ,$$
  

$$T_{2,3}(t,\lambda^2) = \frac{1}{\Lambda_{HQE}} \frac{\lambda^2}{1-t} \left( F_1(\lambda) - tF_2(\lambda) \right) ,$$
  

$$T_5(t,\lambda^2) = \frac{1}{\Lambda_{HQE}} \frac{t^2\lambda^2}{1-t} \left( F_1(\lambda) - F_2(\lambda) \right) ,$$

 $F_1(\lambda) = \sum_{l=0}^{\infty} (2l)! (\lambda^2)^l$  $F_2(\lambda) = \sum_{l=0}^{\infty} (2l)! (t\lambda^2)^l$ 

## Setting up the HQE

• Scalar Hadronic Structure functions

$$T_{i}(t, r^{2}) = \frac{1}{\Lambda_{HQE}} \sum_{l=0}^{\infty} \left(\frac{1}{r^{2}}\right)^{l+1} P_{l}^{(i)}(t)$$
$$P_{l}^{(i)}(t) = \sum_{n=0}^{l+1} t^{l+1-n} a_{n}^{(i,n+l)}$$

 $a_n^{(i,n+l)}$  can in principle be calculated from HQE parameters

$$r^2 \equiv \frac{Q^2}{\Lambda_{HQE}^2}$$

$$t \equiv \frac{vQ}{\Lambda_{HQE}}$$

## **Model expressions**

 $\hat{\Delta}_{\rm DV} W_{1,4}(vQ,Q^2) = -\frac{1}{\pi} \hat{\Delta}_{\rm DV} {\rm Im} \left[ T_{1,4}(vQ,Q^2) \right] =$  $\frac{1}{\Lambda_{HQE} - vQ} \quad \frac{vQ}{\sqrt{Q^2}} \left( \sin\left(\frac{\sqrt{Q^2}}{\Lambda_{HQE}}\right) - \sqrt{\frac{vQ}{\Lambda_{HQE}}} \sin\left(\frac{1}{\sqrt{\Lambda_{HQE}}}\sqrt{\frac{Q^2}{vQ}}\right) \right)$  $\hat{\Delta}_{\rm DV} W_{2,3}(vQ,Q^2) = -\frac{1}{\pi} \hat{\Delta}_{\rm DV} {\rm Im} \left[ T_{2,3}(vQ,Q^2) \right] =$  $\frac{1}{\Lambda_{HQE} - vQ} \frac{\Lambda_{HQE}}{\sqrt{Q^2}} \left( \sin\left(\frac{\sqrt{Q^2}}{\Lambda_{HQE}}\right) - \sqrt{\frac{vQ}{\Lambda_{HQE}}} \sin\left(\frac{1}{\sqrt{\Lambda_{HQE}}}\sqrt{\frac{Q^2}{vQ}}\right) \right)$  $\hat{\Delta}_{\rm DV} W_5(vQ,Q^2) = -\frac{1}{\pi} \hat{\Delta}_{\rm DV} {\rm Im} \left[ T_5(vQ,Q^2) \right] =$  $\left|\frac{1}{\Lambda_{HQE} - vQ} - \frac{\left(vQ\right)^2}{\Lambda_{HQE}\sqrt{Q^2}} \left(\sin\left(\frac{\sqrt{Q^2}}{\Lambda_{HQE}}\right) - \sqrt{\frac{\Lambda_{HQE}}{vQ}}\sin\left(\frac{\bullet}{\sqrt{\Lambda_{HQE}}}\sqrt{\frac{Q^2}{vQ}}\right)\right) \right|$ 75

$$O_{\rm DV}^{(3)} = (5.182 \ \mathcal{C}_{\rm DV} - 0.546|_{m_b^4} + 0.519|_{m_b^5}) \times 10^{-3} \qquad (q_{\rm cut}^2 = 3.0 \ {\rm GeV}^2)$$
  

$$O_{\rm DV}^{(3)} = (2.166 \ \mathcal{C}_{\rm DV} - 0.494|_{m_b^4} + 0.499|_{m_b^5}) \times 10^{-3} \qquad (q_{\rm cut}^2 = 4.0 \ {\rm GeV}^2)$$
  

$$O_{\rm DV}^{(3)} = (0.751 \ \mathcal{C}_{\rm DV} - 0.447|_{m_b^4} + 0.487|_{m_b^5}) \times 10^{-3} \qquad (q_{\rm cut}^2 = 5.0 \ {\rm GeV}^2)$$

 $\mathrm{GeV}^2$ )

## **Input values**

| Input values                    |                      |      |  |  |
|---------------------------------|----------------------|------|--|--|
| $m_b^{kin}$                     | $4.573 { m GeV}$     | [20] |  |  |
| $\overline{m}_c(2 \text{ GeV})$ | $1.092 { m GeV}$     | [20] |  |  |
| $m_B$                           | $5.279~{ m GeV}$     | [30] |  |  |
| $\epsilon_{1/2}$                | $0.390~{ m GeV}$     | [23] |  |  |
| $\epsilon_{3/2}$                | $0.476~{ m GeV}$     | [23] |  |  |
| $(\mu_{\pi}^2)^{\perp}$         | $0.477 \ { m GeV^2}$ | [20] |  |  |
| $(\mu_G^2)^\perp$               | $0.306 \ { m GeV^2}$ | [20] |  |  |

## LSSA

| LLSA approximation     |                          |  |  |
|------------------------|--------------------------|--|--|
| Historical basis       |                          |  |  |
| $( ho_D^3)^{\perp}$    | $0.232 \ { m GeV^3}$     |  |  |
| $( ho_{LS}^3)^{\perp}$ | $-0.161 { m ~GeV^3}$     |  |  |
| $m_1$                  | $0.126 \text{ GeV}^4$    |  |  |
| $m_2$                  | $-0.112 { m ~GeV^4}$     |  |  |
| $m_3$                  | $-0.062 \text{ GeV}^4$   |  |  |
| $m_4$                  | $0.397 \ \mathrm{GeV^4}$ |  |  |
| $m_5$                  | $0.081 \ \mathrm{GeV^4}$ |  |  |
| $m_6$                  | $0.062 \text{ GeV}^4$    |  |  |
| $m_7$                  | $-0.039 \text{ GeV}^4$   |  |  |
| $m_8$                  | $-1.17 { m GeV^4}$       |  |  |
| $m_9$                  | $-0.393 { m GeV^4}$      |  |  |

| LLS      | SA approximation      | LLSA                 |
|----------|-----------------------|----------------------|
| I        | Historical basis      |                      |
| $r_1$    | $0.049 \ { m GeV^5}$  | $\mu_{\pi}^2$        |
| $r_2$    | $-0.106 { m ~GeV^5}$  | $\mu_G^2$            |
| $r_3$    | $-0.027 \ { m GeV^5}$ | $	ilde{ ho}_D^3$     |
| $r_4$    | $-0.043 { m ~GeV^5}$  | $	ilde{r}_E^4$       |
| $r_5$    | $0.00~{ m GeV^5}$     | $r_G^4$              |
| $r_6$    | $0.00 \ { m GeV^5}$   | $\widetilde{s}_E^4$  |
| $r_7$    | $0.00~{ m GeV^5}$     | $s_B^4$              |
| $r_8$    | $-0.039 { m ~GeV^5}$  | $s_{qB}^4$           |
| $r_9$    | $0.074~{ m GeV^5}$    | $X_1^5$              |
| $r_{10}$ | $0.068 \ { m GeV^5}$  | $X_2^{\overline{5}}$ |
| $r_{11}$ | $0.0059~{ m GeV^5}$   | $X_{3}^{5}$          |
| $r_{12}$ | $0.010~{ m GeV^5}$    | $X_4^5$              |
| $r_{13}$ | $-0.055 { m ~GeV^5}$  | $X_5^5$              |
| $r_{14}$ | $0.039~{ m GeV^5}$    | $X_6^5$              |
| $r_{15}$ | $0.00 \ { m GeV^5}$   | $X_{7}^{5}$          |
| $r_{16}$ | $0.00~{ m GeV^5}$     | $X_8^5$              |
| $r_{17}$ | $0.00 { m ~GeV^5}$    | $X_9^5$              |
| $r_{18}$ | $0.00 \ { m GeV^5}$   | $X_{10}^{5}$         |

| LLSA approximation                |                          |  |  |
|-----------------------------------|--------------------------|--|--|
| <b>RPI-basis</b>                  |                          |  |  |
| $\mu_{\pi}^2$                     | $0.477 { m ~GeV^2}$      |  |  |
| $\mu_G^2$                         | $0.290 \ { m GeV^2}$     |  |  |
| $	ilde{ ho}_D^3$                  | $0.205 \ \mathrm{GeV^3}$ |  |  |
| $\tilde{r}_E^4$                   | $0.098 \ \mathrm{GeV^4}$ |  |  |
| $r_{G}^{\overline{4}}$            | $0.16 \ \mathrm{GeV^4}$  |  |  |
| $\widetilde{s}_E^{\widetilde{4}}$ | $-0.074 \ { m GeV^4}$    |  |  |
| $s_B^{\overline{4}}$              | $-0.14 { m GeV^4}$       |  |  |
| $s_{aB}^{\overline{4}}$           | $-1.00 { m GeV^4}$       |  |  |
| $X_{1}^{5}$                       | $0.049 { m ~GeV^5}$      |  |  |
| $X_2^5$                           | $0.00 \ { m GeV^5}$      |  |  |
| $X_{3}^{5}$                       | $0.094 \text{ GeV}^5$    |  |  |
| $X_4^5$                           | $-0.41 { m ~GeV^5}$      |  |  |
| $X_{5}^{5}$                       | $-0.039 { m ~GeV^5}$     |  |  |
| $X_6^5$                           | $0.00 \ { m GeV^5}$      |  |  |
| $X_7^5$                           | $0.091 { m ~GeV^5}$      |  |  |
| $X_8^5$                           | $-0.0030 \ { m GeV^5}$   |  |  |
| $X_9^5$                           | $0.27 \ { m GeV^5}$      |  |  |
| $X_{10}^{5}$                      | $0 0.025 \text{ GeV}^5$  |  |  |



