On the potential of Light-Cone Sum Rules without semi-global Quark-Hadron Duality arXiv:2404.01290 (AC, N. Mahmoudi, Y. Monceaux)

Alexandre Carvunis

Università di Torino

Challenges in semileptonic ${\it B}$ decays Vienna, September 26th, 2024

Motivation	Light-Cone Sum Rules with B-meson LCDAs	Our approach	Results
•000	0000000		

2 Light-Cone Sum Rules with *B*-meson LCDAs

3 Our approach

Motivation	
0000	

Light-Cone Sum Rules with *B*-meson LCDA:

Our approach

Status of *B*-anomalies in $b \to s\ell\ell$

- Anomalies in the clean observables $R_{K^{(*)}}, BR(B_{(s)} \to \mu \mu) \text{ are gone.}$
- Discrepancies are remaining in theoretically challenging observables: $P'_5(B \to K^* \mu \mu)$, $BR(B \to K^+ \mu \mu)$, ...
- Are *B*-anomalies due to New Physics or misunderstood SM effect?

Light-Cone Sum Rules with *B*-meson LCDA

Our approach

Theory of $B \to M\ell\ell \ (b \to s\ell\ell)$

$$A(B \to M\ell^+\ell^-) = -\frac{G_F\alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* \left[(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + B_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell \right], \qquad (1)$$

where

$$A_{\mu} = C_{9} \langle \bar{M} | \bar{s} \gamma_{\mu} P_{L} b | \bar{B} \rangle - C_{7} \frac{2im_{b}}{q^{2}} q^{\nu} \langle \bar{M} | \bar{s} \sigma_{\mu\nu} P_{R} b | \bar{B} \rangle,$$

$$B_{\mu} = C_{10} \langle \bar{M} | \bar{s} \gamma_{\mu} P_{L} b | \bar{B} \rangle,$$
(2)

the $B\to M$ matrix elements are expressed in terms of (local) form factors. The remaining term is the non-local contribution

$$T_{\mu} = -\frac{4\pi^2}{q^2} i \int d^4x \, e^{iq \cdot x} \langle \bar{M} | \, Tj_{\mu}(x) H^c(0) | \bar{B} \rangle.$$
(3)

Non-local contributions do not seem to explain the anomalies (still debated):

- Unitarity bounds (Bobeth, Chrzaszcz, van Dyk, Virto 2017 [1], Gubernari, van Dyk, Virto 2020 [2]).
- q²-independence of the fitted NP Wilson coefficients (e.g. Bordone, Isidori, Mächler, Tinari 2024 [3]).

The status of the *B*-anomalies seems to rely essentially on the calculation of the local form factors in the SM. In this talk I focus on the low- q^2 range where most of the anomalies are. There are three ways to compute the form factors in this region:

- LCSR with light-meson distribution amplitude (DA) (see e.g. Khodjamirian Russov 2017 [4])
- LCSR with *B*-meson DA (this talk) (e.g. Cui, Huang, Shen, Wang, Wang 2022 [5] in SCET, Gubernari, Kokulu, Van Dyk 2018 [6] in HQET). GKvD used e.g. in LHCb 2024 [7].
- Lattice QCD, at $q^2 = 0$ only $f^{B \to K}_{+, T}$ (HPQCD 2022 [8])

Motivation	Light-Cone Sum Rules with B-meson LCDAs	Our approach	Results
	●000000		

2 Light-Cone Sum Rules with *B*-meson LCDAs

3 Our approach

4 Results

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000	⊙●00000	00000000	00000000
Establishing the sum	rule		

Khodjamirian, Mannel, Offen 2005 [9]

$$\Pi^{\mu\nu}(q,k) = i \int d^4 x e^{ik.x} \langle 0 | T \{ J^{\nu}_{int}(x) J^{\mu}_{weak}(0) \} | \bar{B}(p_B = q + k) \rangle, \quad (4)$$

From analyticity (taking $k^2 < 0$) and unitarity

$$\Pi^{\mu\nu}(q,k) = \frac{\langle 0|J_{int}^{\nu}|M(k)\rangle\langle M(k)|J_{weak}^{\mu}|\bar{B}(q+k)\rangle}{m_M^2 - k^2} + \int_{s_{cont}}^{+\infty} ds \frac{\rho^{\mu\nu}(q,s)}{s-k^2}, \quad (5)$$

From the identification of Lorentz structures in the definition of the form factors

$$\Pi_F(q^2, k^2) = Y_F \frac{F(q^2)}{m_M^2 - k^2} + \int_{s_{cont}}^{\infty} \frac{\rho_F(q^2, s)}{s - k^2},$$
 (6)

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000	00●0000	00000000	00000000
Establishing the sum	rule		

We reproduce the results of Gubernari, Kokulu, van Dyk 2018 [6], with 2-particles up to twist-5 and and 3-particles up to twist-3. For 2-particles e.g.:

$$\Pi_{F}^{LCOPE} = \int_{0}^{+\infty} d\sigma \sum_{n=1}^{+\infty} \frac{I_{n}^{F}(\sigma)}{(s(\sigma) - k^{2})^{n}}, \quad s(\sigma) \equiv \sigma m_{B}^{2} + \frac{m_{1}^{2} - \sigma q^{2}}{1 - \sigma}$$
(7)

$$I_n^{F,(2p)}(\sigma, q^2) = \frac{f_B m_B}{(1-\sigma)^n} \sum_{\psi_{2p}} C_n^{F,\psi_{2p}}(\sigma, q^2) \,\psi_{2p}(\sigma m_B) \tag{8}$$

where $\psi_{2p} = \phi_+, \phi_-, g_+, g_-$ are the distributions amplitudes. B-LCDAs from Braun, Ji, Manoshov 2017 [10] using the exponential model (using the alternative models yield a 0 - 10% variation). We derive the full expression for the twist-5 2-particle LCDA g_- . (Wandzura-Wilczek approximation in GKvD 2018)

Motivation 0000	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our a oooc	pproach 00000	Results 0000000
Borel Transform v	s Moments method			
Global quark-	hadron duality			
$\Pi_F = Y_F \frac{I}{m_F^2}$	$\frac{F(q^2)}{M_M^2 - k^2} + \int_{s_{cont}}^{\infty} \frac{\rho_F(q^2, s)}{s - k^2} \simeq \Pi_F^L$	$^{COPE} = \int_0^{+\infty} d\sigma$	$\sum_{n=1}^{+\infty} \frac{I_n^F(\sigma)}{(s(\sigma) - k^2)^n}$	(9)
Borel transform	:	Moments meth	od (used in this wo	rk)
$\frac{e^{m_M^2/M^2}}{Y_F}\mathcal{B}_{M^2}\Pi_F($	$q^2, k^2)$	$\left \frac{(m_M^2 - k^2)^{p+1}}{p! Y_F} \right $	$\left(rac{\partial}{\partial k^2} ight)^p \Pi_F(q^2,k^2)$	
$\equiv \frac{e^{m_M^2/M^2}}{Y_F} \lim_{\substack{p, -k^2 \rightarrow + \\ -k^2/p = M}}$	$\sum_{\substack{m \\ p \neq m \\ p$	$= F(q^2) + \int_{s_{con}}^{+\infty}$	$\sum_{t}^{\infty} rac{ ho_F(s)}{Y_F} \left(rac{m_M^2 - k^2}{s - k^2} ight)$	$\Big)^{p+1}$
$= F(q^2) + \int_{s_{cont}}^{+\infty}$	$\sum_{K=0}^{\infty} \frac{\rho_F(s)}{Y_F} e^{(m_M^2 - s)/M^2}$	$=\int_0^\infty d\sigma \sum_{n=1}^\infty \frac{1}{\sigma}$	$\frac{n+p-1)!}{(n-1)!}$	
$=\int_0^{+\infty} d\sigma \sum_{n=1}^{+\infty} -$	$\frac{I_n^F(\sigma)}{M^{2(n-1)}(n-1)!}e^{(m_M^2-s(\sigma))/M^2}$	$\boxed{M^2 \sim \frac{-k^2}{p}}$	$\times \frac{I_n^{(F)}(\sigma)}{(s(\sigma)-k^2))^{n}}$	+p
	(10)			(11)

9 / 28

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000	0000●00	0000000	
Semi-global Quark	Hadron Duality		

Semi-Global Quark-Hadron Duality approximation

$$\int_{s_{cont}}^{+\infty} \rho(s) e^{-s/M^2} = \frac{1}{\pi} \int_{s_0}^{+\infty} \mathrm{Im} \Pi^{LCOPE}(s) e^{-s/M^2}$$
(12)

Thus

$$Y_F F(q^2) e^{-m_M^2/M^2} = \mathcal{B}_{M^2} \Pi_F^{LCOPE} - \frac{1}{\pi} \int_{s_0}^{+\infty} \mathrm{Im} \Pi^{LCOPE}(s) e^{-s/M^2}$$
(13)

where the effective threshold is set to verify e.g.

$$m_M^2 = \frac{\frac{d}{d(-1/M^2)} \left[\mathcal{B}_{M^2} \Pi_F^{LCOPE} - \frac{1}{\pi} \int_{s_0}^{+\infty} \mathrm{Im} \Pi^{LCOPE}(s) e^{-s/M^2} \right]}{\mathcal{B}_{M^2} \Pi_F^{LCOPE} - \frac{1}{\pi} \int_{s_0}^{+\infty} \mathrm{Im} \Pi^{LCOPE}(s) e^{-s/M^2}}$$
(14)

Motivation	Light-Cone Sum Rules with B-meson LCDAs	Our approach	Results
	000000		
Dependence on λ^{-1}	and offective threshold determinet	ion stratogy in P mos	on LCCD
Dependence on Λ_D	and effective threshold determinat	ion strategy in D-mes	

form		$B \to K^*$			$B\to\rho$	
factor	GKvD [6]	(i)	(ii)	GKvD [6]	(i)	(ii)
V	0.33 ± 0.11	$0.31\substack{+0.19 \\ -0.15}$	$0.48^{+0.24}_{-0.20}$	0.27 ± 0.14	$0.16\substack{+0.12 \\ -0.09}$	$0.27^{+0.16}_{-0.13}$
A_1	0.26 ± 0.08	$0.25\substack{+0.14 \\ -0.12}$	$0.36\substack{+0.18\\-0.15}$	0.22 ± 0.10	$0.14\substack{+0.09\\-0.07}$	$0.21_{-0.10}^{+0.11}$
A_2	0.24 ± 0.09	$0.22\substack{+0.16 \\ -0.12}$	$0.36\substack{+0.20\\-0.17}$	0.19 ± 0.11	$0.11\substack{+0.10 \\ -0.07}$	$0.20_{-0.10}^{+0.14}$
T_1	0.29 ± 0.10	$0.27\substack{+0.17 \\ -0.13}$	$0.41^{+0.20}_{-0.17}$	0.24 ± 0.12	$0.15\substack{+0.10 \\ -0.08}$	$0.24_{-0.11}^{+0.13}$
T_{23}	0.58 ± 0.13	$0.58\substack{+0.19 \\ -0.20}$	$0.73_{-0.21}^{+0.16}$	0.56 ± 0.15	$0.43_{-0.15}^{+0.16}$	$0.56_{-0.16}^{+0.16}$
s_0 (GeV ²)	[1.4, 1.7]	$1.53_{-0.09}^{+0.35}$	$1.54_{-0.10}^{+0.34}$	1.6 ± 0.032	$1.03_{-0.04}^{+0.08}$	$1.05_{-0.04}^{+0.09}$

Table 1: Prediction of $B \rightarrow \rho, K^*$ form factors at $q^2 = 0$ following the calculation of GKvD 2018 using a different method for the determination of the effective threshold. $\lambda_B^{-1} = 2.2 \pm 0.6$ GeV⁻¹ (GKvD 2018 [6]) (i) and $\lambda_B^{-1} = 2.72 \pm 0.66$ GeV⁻¹ (Khodjamirian et al. 2020 [11]) (ii).

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000	000000●	00000000	00000000
Challenges of <i>B</i> -mes	on LCSR		

- Effective threshold: For $B \to \pi, \rho, K$, the effective threshold s_0 cannot be determined using the meson mass sum rule. Thresholds from QCD sum rules are used in GKvD 2018.
- Borel window: In the literature $M^2 \in [0.5, 1.5] \text{ GeV}^2$ (KMO '06, GKvD '18) or alternatively $M^2 \in [1, 1.5] \text{ GeV}^2$ (CHSWW '22, DKVV '23). Up to 20% variations of the form factor between $M^2 = 0.5 \text{ GeV}^2$ and $M^2 = 1.5 \text{ GeV}^2$.
- *B*-LCDA are only known asymptotically at low ω , full DAs are model dependent. Plagued by end-point divergences which can break the twist hierarchy.
- *B*-LCDA parameters are poorly known. We use our own average of the results of λ_B^{-1} Khodjamirian, Mandal, Mannel 2020 [11] $\lambda_B^{-1} = 2.72 \pm 0.66 \text{ GeV}^{-1}$ (GKvD: $\lambda_B^{-1} = 2.2 \pm 0.6 \text{ GeV}^{-1}$)

Motivation	Light-Cone Sum Rules with B-meson LCDAs	Our approach	Results
		●0000000	

2 Light-Cone Sum Rules with *B*-meson LCDAs

3 Our approach

4 Results

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000		o●oooooo	00000000
Definitions			

We define

$$\widetilde{\Pi}_{F}^{(p)}(q^{2},k^{2}) \equiv \frac{(m_{M}^{2}-k^{2})^{p+1}}{p! Y_{F}} \Pi_{F}^{(p)}(q^{2},k^{2}), \quad R_{F}(p,q^{2},k^{2}) \equiv \int_{s_{cont}}^{\infty} \frac{\rho_{F}(s)}{Y_{F}} \left(\frac{m_{M}^{2}-k^{2}}{s-k^{2}}\right)^{p+1},$$

and

$$\widetilde{m}_{M}^{2}(p,\ell,k^{2}) \equiv \left[\frac{p!}{(p-\ell)!} \frac{\Pi_{F}^{(p-\ell)}}{\Pi_{F}^{(p)}}\right]^{1/\ell} + k^{2},$$

The sum rule becomes

$$\widetilde{\Pi}_{F}^{(p)}(q^{2},k^{2}) = F(q^{2}) + R_{F}(p),$$
(15)

and

$$\widetilde{\Pi}_{F}^{(p)}(q^{2},k^{2}) \xrightarrow[p \to \infty]{} F(q^{2}), \quad R_{F}(p,q^{2},k^{2}) \xrightarrow[p \to \infty]{} 0, \quad \widetilde{m}_{M}^{2}(p,\ell,k^{2}) \xrightarrow[p \to \infty]{} m_{M}^{2}.$$
 (16)

Light-Cone Sum Rules with *B*-meson LCDA:

Our approach

Results 00000000

(LC) Sum Rule without semi-global QHD

Accounting for the truncation error, $\Pi_F^{(p)} = \Pi_{F,LCOPE}^{(p)}$ within uncertainties. For p (M^2) large (low) enough, $R_F \ll F(q^2)$ and $R_F \ll \operatorname{std}(\Pi_{F,LCOPE}^{(p)})$, thus $F(q^2) = \Pi_{F,LCOPE}^{(p)}(q^2)$ within uncertainties.

Same behaviour for \widetilde{m}_M^2 , $\widetilde{m}_{M,pert}^2$ and m_M^2 , thus the daughter sum rule can tell us when (if) we reach the convergence regime. $p \to \infty \leftrightarrow 1/M^2 \to \infty$.

Light-Cone Sum Rules with *B*-meson LCDAs

dim $8 + \alpha_s$

dim $6 + \alpha^3$

dim $8 + \alpha_s^3$

PDG

Exp.

Our approach

Results 00000000

Check with two-point QCD sum rule for the ho meson - WIP

- Shifman-Vainshtein-Zakharov [12] sum rule successfully predicts e.g. the ρ meson decay constant
- $\Pi_{SVZ} = \sum_d C_d(q^2) \langle O_d \rangle$ where $\langle O_d \rangle$ are quark-gluon vacuum condensates
- $\langle \bar{q}q \rangle$ from FLAG 2021, $\langle \bar{s}s \rangle$ from HPQCD [13], $\langle \alpha_s GG \rangle = 0.012(4)$ (SVZ)
- Dimension 8 contribution for the ρ sum rule extracted from $\frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$ [14]
- dim 0: α_s^3 , dim 3: α_s^2 , dim 6: α_s
- Caveat: This figure only includes parametric errors
- We obtain f_{ρ} from SVZ sum rules without semi-global QHD

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000		0000●000	0000000
QCD perturbativity			

$$\Pi_{F,LCOPE}^{(p)}(q^{2},k^{2}) = \int_{0}^{\sigma_{\max}} d\sigma \sum_{n=1}^{\infty} \frac{(n+p-1)!}{(n-1)!} \frac{I_{n}^{(F)}(\sigma)}{(s(\sigma)-k^{2}))^{n+p}} \int_{0}^{\mu_{weak}} (\tilde{q} \equiv q-m_{b}v) \\ \equiv \int_{0}^{\sigma_{\max}} d\sigma I_{\text{tot}}^{(F,p)}(\sigma,k^{2}) \\ M_{v} = \int_{0}^{\sigma_{\max}} d\sigma I_{v}^{(F,p)}(\sigma,k^{2}) \\ M_{v} = \int_{0}^{\sigma_{\max}} d\sigma I_{v}^{(F,p)}(\sigma,$$

We define the average virtuality

$$\langle s \rangle = \frac{\int_0^{\sigma_{\max}} d\sigma |I_{\text{tot}}^{(F,p)}(\sigma,k^2)|s(\sigma)}{\int_0^{\sigma_{\max}} d\sigma |I_{\text{tot}}^{(F,p)}(\sigma,k^2)|}$$

To keep the radiative corrections under control we require

$$|\langle s\rangle\!-\!m_1^2| \gg \Lambda_{QCD}^2, \quad |k^2|, |\tilde{q}^2| \gg \Lambda_{QCD}^2.$$

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000		ooooo●oo	00000000
QCD error model			

For the characteristic QCD scale we take

$$\mu_{\rm QCD} \equiv \min(\sqrt{\langle s \rangle - m_1^2}, \sqrt{|k^2|}, \sqrt{|\tilde{q}^2|}).$$
(17)

Interestingly, $\langle s \rangle > -k^2/p \approx M^2$ when p becomes large.

$$\Pi_{F}^{(p)} = \Pi_{F,LO}^{(p)} \left[1 + w_{\alpha_s}(\mu) \sum_{n=1} \left(\frac{\alpha_s(\mu)}{\pi} \right)^n \right] = \Pi_{F,LO}^{(p)} \left[1 + w_{\alpha_s}(\mu) \frac{\alpha_s(\mu)/\pi}{1 - \alpha_s(\mu)/\pi} \right],$$
(18)
here $w_{\alpha_s}(\mu \sim m_B) \sim 1$ and $w_{\alpha_s}(\mu \to \Lambda_{QCD}) = 0$. We take $\mu = \mu_{QCD} > 0.8$ GeV

where $w_{\alpha_s}(\mu \sim m_B) \sim 1$ and $w_{\alpha_s}(\mu \rightarrow \Lambda_{QCD}) = 0$. We take $\mu = \mu_{QCD} > 0.8 \text{ GeV}$ and

$$w_{\alpha_s} \in [-1.5, 1.5]$$
 (19)

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000		00000000	0000000
LCOPE truncation e	rror		

$$\Pi_{F,LCOPE}(q^{2},k^{2}) = \underbrace{\Pi_{2p}^{twist-2,3} + \Pi_{3p}^{twist-3,4}}_{\propto (x^{2})^{0}: LT} + \underbrace{\Pi_{2p}^{twist-4,5} + \Pi_{3p}^{twist-5,6}}_{\propto x^{2}: NLT} + \dots$$
(20)
$$\Pi_{F}^{(p)} = \sum_{t \ge 2} \Pi_{twist=t}^{(p)} = \Pi_{LT}^{(p)} + \Pi_{NLT}^{(p)} + \sum_{t \ge 6} \Pi_{twist=t}^{(p)}$$
$$\equiv \Pi_{LT}^{(p)} + \Pi_{NLT}^{(p)} + w_{LCOPE} \times \frac{(\Pi_{NLT}^{(p)})^{2}}{|\Pi_{LT}^{(p)}| - |\Pi_{NLT}^{(p)}|}.$$

To be conservative we take a uniformly distributed w_{LCOPE}

$$w_{LCOPE} \in [-2, 2] \tag{22}$$

and keep $\Pi_{NLT}^{(p)}/\Pi_{LT}^{(p)}<20\%$

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000		0000000●	0000000
Strategy summary			

• Requirements:

- Large average virtuality $\langle s \rangle m_1^2 \gg \Lambda_{QCD}^2$ (pQCD)
- $\Pi_{NLT}/\Pi_{LT} \ll 1$ (LCOPE)
- Checks:
 - k^2 and p- independence (one extra check provided by the moments method)
 - Convergence towards the physical mass of the final meson $\tilde{m}_M^2 \to m_M^2$

Motivation	Light-Cone Sum Rules with B-meson LCDAs	Our approach	Results
			0000000

2 Light-Cone Sum Rules with *B*-meson LCDAs

3 Our approach

4 Results

Form factors Correlation

Light-Cone Sum Rules with *B*-meson LCDA

Our approach

$-k^2/p$ -dependence of $V^{B \rightarrow K^*}$

$-k^2/p$ (GeV ²)	20/13	20/16	20/20	20/25	20/30	20/35
$R_{V^{B \to K^*}}$	$0.50_{-0.13}^{+0.15}$	$0.37^{+0.11}_{-0.11}$	$0.25\substack{+0.08 \\ -0.08}$	$0.15_{-0.04}^{+0.05}$	$0.08\substack{+0.03 \\ -0.02}$	$0.03^{+0.01}_{-0.01}$
$V^{B \to K^*}$	$0.43_{-0.19}^{+0.24}$	$0.45_{-0.20}^{+0.25}$	$0.47\substack{+0.28 \\ -0.22}$	$0.49^{+0.30}_{-0.21}$	$0.52_{-0.23}^{+0.31}$	$0.53_{-0.24}^{+0.35}$
$\widetilde{\Pi}^{(p)}_{V^{B o K^*}}$	$0.94_{-0.33}^{+0.37}$	$0.84^{+0.36}_{-0.31}$	$0.72_{-0.30}^{+0.35}$	$0.64^{+0.34}_{-0.26}$	$0.60\substack{+0.32\\-0.25}$	$0.55_{-0.25}^{+0.35}$
$s_0({\sf GeV}^2)$	$1.43\substack{+0.026\\-0.012}$	$1.48^{+0.03}_{-0.01}$	$1.56\substack{+0.04\\-0.02}$	$1.68\substack{+0.06\\-0.03}$	$1.87\substack{+0.1 \\ -0.05}$	$2.21_{-0.10}^{+0.25}$

Table 2: Central values and 68% C.L. intervals of $\widetilde{\Pi}_{V^B \to K^*}^{(p)}$ ($q^2 = 0$). The corresponding $R_{V^B \to K^*}$, $V^{B \to K^*}$ and s_0 are estimated using DSR and semi-global QHD.

At $-k^2/p \ M^2 \sim 1.53 \text{GeV}^2 \ R_F/\widetilde{\Pi}_F^{(p)} = 53\%!$ We advocate for $-k^2/p \ M^2 < 1 \text{ GeV}^2$. Variation of $V^{B \to K^*}$ of 20% between $M^2 = 0.5 \text{ GeV}^2$ and $M^2 = 1.5 \text{ GeV}^2$.

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000		00000000	○00●0000
Results - $f_+^{B \to K}$			

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000	0000000	00000000	00000000
Results - $B \rightarrow K$			

form factor	$-k^2/p$	$R_F(p,k^2)$	upper limit @ 95% C.L.	$\widetilde{\Pi}_{F}^{(p)}(1\sigma)$	literature	Ref.
$f_+^{B \to K}$	10/19	$0.02\substack{+0.05\\-0.04}$	0.57	$0.32_{-0.12}^{+0.15}$	$\begin{array}{r} 0.332(12) \\ 0.27(8) \\ 0.325(85) \\ 0.395(33) \end{array}$	HPQCD [8] GvDK [6] [†] CHSWW [5] KR [4]
$f_T^{B \to K}$	10/8	$0.03\substack{+0.06\\-0.11}$	0.46	$0.34_{-0.07}^{+0.08}$	$\begin{array}{c} 0.332(21) \\ 0.25(7) \\ 0.381(27) \\ 0.381(97) \end{array}$	HPQCD [8] GvDK [6] [†] KR [4] CHSWW [5]

Table 3: Upper limits at the 95% confidence level and central value of $\widetilde{\Pi}_F^{(p)}$ for $B \to K$. We include the corresponding values of $-k^2$ and p as well as an estimate of $R_F(p, k^2)$ using quark-hadron duality. R_F is calculated using s_0 from GKvD 18.

Motivation	Light-Cone Sum Rules with <i>B</i> -meson LCDAs	Our approach	Results
0000		00000000	○○○○○●○
Correlation			

Motivation	Light-Cone Sum Rules with B-meson LCDAs	Our approach	Results	
			0000000	
Conclusion a	nd prospects			

- We propose to push the LCSR method to low Borel parameters (or $-k^2/p$) to suppress (virtually) entirely the spectral integral and avoid the semi-global QHD.
- In this limit the predicted FFs are less sensitive to the choice of the *B*-DA model.
- We find that the spectral density integral is negligible in the region $0.4 \text{ GeV}^2 < M^2 < 0.5 \text{ GeV}^2$ and the LCOPE is under control for $B \rightarrow$ light channels. Radiative corrections in this range are potentially large but calculable.
- Avoiding the determination of the effective threshold yields higher correlations between form factors with different final mesons.
- This approach works well for LCSR with e.g. *K*-LCDAs for which the radiative corrections are known and higher twists have been calculated. 24xx.soon
- We have started computing the radiative corrections for *B*-LCSR in HQET.

Thank you!

We take the B-LCDAs from Braun, Ji, Manoshov 2017 [10] using the exponential model (using the alternative models yield a 0-10% variation). For 2-particles the DA's are defined as

$$\langle 0 | \bar{q}(x) \Gamma[x, 0] h_v(0) | \bar{B}(v) \rangle = -\frac{i}{2} F_B \operatorname{Tr} \left[\gamma_5 \Gamma P_+ \right] \int_0^\infty d\omega \, e^{-i\omega(vx)} \left\{ \phi_+(\omega) + x^2 g_+(\omega) \right\}$$

$$+ \frac{i}{4} F_B \operatorname{Tr} \left[\gamma_5 \Gamma P_+ \not x \right] \frac{1}{vx} \int_0^\infty d\omega \, e^{-i\omega(vx)} \left\{ \left[\phi_+ - \phi_- \right](\omega) + x^2 \left[g_+ - g_- \right](\omega) \right\}$$

$$(23)$$

We derive the full expression for the twist-5 2-particle LCDA g_{-} . (Only the Wandzura-Wilczek approximation was used for g_{-} in GKvD [6])

Dependence on λ_B^{-1} and effective threshold determination strategy in *B*-meson LCSR

form	$B \to \pi$			$B \to K$		
factor	GKvD [6]	(iii)	(iv)	GKvD [6]	(iii)	(iv)
f_+	0.21(7)	0.023(7)	$0.26\substack{+0.08\\-0.08}$	0.27(8)	0.24(7)	$0.34\substack{+0.09\\-0.09}$
f_T	0.19(7)	0.024(7)	$0.24_{-0.06}^{+0.06}$	0.25(7)	0.24(7)	$0.31\substack{+0.06\\-0.08}$
$s_0 (\text{GeV}^2)$	0.7 ± 0.014	0.0393(1)	0.7 ± 0.014	1.05 ± 0.021	$0.54_{-0.02}^{+0.03}$	1.05 ± 0.021

Table 4: Prediction of $B \to \pi, K$ form factors at $q^2 = 0$ following the calculation of GKvD 2018 [6]. Our results are obtained using $\lambda_B^{-1} = 2.72 \pm 0.66$ GeV⁻¹ and s_0 obtained from a daughter sum rule (iii) and using the same threshold s_0 as in [6] (iv).

Backup Slides 000●00 References 0000

Results - $k^2 = -20 \text{GeV}^2$

Mass prediction

Backup Slides

000000

- The mass sum rule has huge error bars because we decorrelated the radiative corrections of the successive derivatives.
- The parametric uncertainties in the DA parameters cancel out when p increases

$$\widetilde{m}_{M}^{2} = m_{M}^{2} + (m_{M}^{2} - k^{2}) \left[\frac{1}{\ell} \cdot \frac{R_{F}(p-\ell) - R_{F}(p)}{F(q^{2})} + \mathcal{O}\left(\frac{R_{F}}{F}\right)^{2} \right],$$
(24)

Figure 1: Mass predictions accounting for DA parametric error only $k^2 = -20 \text{ GeV}^2$

Backup Slides 00000● References 0000

Results - $k^2 = -20 \text{GeV}^2$

Backup Slides

- [1] C. Bobeth, M. Chrzaszcz, D. van Dyk and J. Virto, Long-distance effects in $B \rightarrow K^* \ell \ell$ from analyticity, Eur. Phys. J. C **78** (2018) 451, [1707.07305].
- [2] N. Gubernari, D. van Dyk and J. Virto, *Non-local matrix elements in* $B_{(s)} \rightarrow \{K^{(*)}, \phi\} \ell^+ \ell^-$, *JHEP* **02** (2021) 088, [2011.09813].
- [3] M. Bordone, G. isidori, S. Mächler and A. Tinari, *Short- vs. long-distance physics* in $B \to K^{(*)}\ell^+\ell^-$: a data-driven analysis, 2401.18007.
- [4] A. Khodjamirian and A. V. Rusov, $B_s \to K \ell \nu_\ell$ and $B_{(s)} \to \pi(K) \ell^+ \ell^-$ decays at large recoil and CKM matrix elements, JHEP **08** (2017) 112, [1703.04765].
- [5] B.-Y. Cui, Y.-K. Huang, Y.-L. Shen, C. Wang and Y.-M. Wang, *Precision calculations of* $B_{d,s}$ π , *K* decay form factors in soft-collinear effective theory, *JHEP* **03** (2023) 140, [2212.11624].
- [6] N. Gubernari, A. Kokulu and D. van Dyk, $B \rightarrow P$ and $B \rightarrow V$ Form Factors from *B-Meson Light-Cone Sum Rules beyond Leading Twist*, *JHEP* **01** (2019) 150, [1811.00983].

- [7] LHCB collaboration, R. Aaij et al., Comprehensive analysis of local and nonlocal amplitudes in the $B^0 \to K^{*0}\mu^+\mu^-$ decay, 2405.17347.
- [8] (HPQCD COLLABORATION)§, HPQCD collaboration, W. G. Parrott,
 C. Bouchard and C. T. H. Davies, *BK and DK form factors from fully relativistic lattice QCD, Phys. Rev. D* 107 (2023) 014510, [2207.12468].
- [9] A. Khodjamirian, T. Mannel and N. Offen, *B*-meson distribution amplitude from the $B \rightarrow \pi$ form-factor, Phys. Lett. B **620** (2005) 52–60, [hep-ph/0504091].
- [10] V. M. Braun, Y. Ji and A. N. Manashov, *Higher-twist B-meson Distribution Amplitudes in HQET*, JHEP 05 (2017) 022, [1703.02446].
- [11] A. Khodjamirian, R. Mandal and T. Mannel, Inverse moment of the B_s-meson distribution amplitude from QCD sum rule, JHEP 10 (2020) 043, [2008.03935].
- [12] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, QCD and Resonance Physics: Applications, Nucl. Phys. B 147 (1979) 448–518.

- [13] HPQCD collaboration, C. T. H. Davies, K. Hornbostel, J. Komijani, J. Koponen, G. P. Lepage, A. T. Lytle et al., *Determination of the quark condensate from heavy-light current-current correlators in full lattice QCD*, *Phys. Rev. D* 100 (2019) 034506, [1811.04305].
- [14] S. Narison, QCD parameters and SM-high precisions from e+e- Hadrons: Summary, Nucl. Part. Phys. Proc. 343 (2024) 104–112, [2309.05342].