# **CP violation in charged current decays**

all the set

Abhijit Mathad, CERN Challenges in Semileptonic B Decays Vienna, Austria

26.09.2024

### Road most travelled (to new physics)

Vub, Vcb, LFU and angular analysis.

### Road most travelled : The good



# Abundant signal allowing for high precision.



Good control over theoretical uncertainties.

### Road most travelled : The good, the bad



# Abundant signal allowing for high precision.



Good control over theoretical uncertainties.

Large and perfectly calibrated simulation samples

Missing neutrinos

### Road most travelled : The good, the bad and the "ugly"



# Abundant signal allowing for high precision.



Missing neutrinos

Require good knowledge bkg (Most timeconsuming part)

# Good control over theoretical uncertainties.

Large and perfectly calibrated simulation samples

### Road most travelled : The good, the bad and the "ugly"

## Conduct analyses not so sensitive to this, yet provide smoking-gun signal to NP?

Require good knowledge bkg (Most timeconsuming part)

### Road less travelled (to new physics)

Tests of CKM unitarity, LFU and angular analysis.



#### **CP** violation

### Types of CP violation

CPV in mixing



Measurement of  $a_{sl}^q$  and prospects

CPV in decay

\* Not covered CPV in interference



> Direct CPV in  $B \rightarrow D^{**}l\nu$ > Triple product asymmetries in  $B \rightarrow D^*l\nu$ 

# Measurement of $a_{sl}^q$ and prospects

### CPV in mixing

#### [M. Grabalso thesis]

#### CPV in mixing

$$a_{\rm sl} \equiv \frac{\Gamma(\overline{B} \to f) - \Gamma(B \to \overline{f})}{\Gamma(\overline{B} \to f) + \Gamma(B \to \overline{f})} \approx \frac{\Delta\Gamma}{\Delta m} \tan\phi_{12}$$

#### New physics sensitive in the loop.

Explore the flavour-specific decays  $B^0 \to D^{(*)-}\mu^+ X$  and  $B_s^0 \to D^{(*)-}\mu^+ X$  i.e.  $\mu$  charge identifies **B** flavour at decay.

Explore asymmetry in untagged decays i.e. no need to determine the **B** flavour at production.





 $a_{sl}^d$ : Fit to for  $B^0$  and  $\overline{B}^0$  samples

2D fit to charm mass and decay time for  $B^0$  and  $\overline{B}^0$  simultaneously Apply corrections to decay time (acceptance, resolution and missing energy)

$$P(\eta_{flav}, t) \propto [P(\eta_{flav}, t_{true}) \otimes R(t - t_{true})] \otimes F(k) \otimes \epsilon(t)$$



[Phys. Rev. Lett. 114, 041601 (2015)]



#### Nuissance asymmetries (covered later)

$$A_{raw} = \frac{N(f,t) - N(f,t)}{N(f,t) + N(\bar{f},t)} = \frac{\boldsymbol{a_{sl}}}{2} \left(1 - \cos(\Delta mt)\right) + \left[A_D + A_P \cos(\Delta mt)\right]$$



 $a_{sl}^{s}$ : Fit to for  $B_{s}^{0}$  and  $\overline{B}_{s}^{0}$  samples

Fit charm mass for  $B_s^0$  and  $\overline{B}_s^0$  decays simultaneously. Three measurements of varying bkg in  $D_s \to K^+ K^- \pi^-$  Dalitz plot.



[Phys. Rev. Lett. 117, 061803 (2016)]

13

### $a_{sl}^{s}$ with fast oscillations

Nuissance asymmetries (covered later)

$$\int A_{raw}(t)dt = \frac{a_{sl}}{2} \left( 1 - \int \cos(\Delta m t)dt \right) + \left[ A_D + A_P \int \cos(\Delta m t)dt \right]$$

Due to fast  $B_s^0$  integral is almost zero  $O(10^{-3})$ .



### $a_{sl}^{s}$ with bkg asymmetries

Nuissance asymmetries (covered later)

$$A_{raw} = \frac{a_{sl}}{2} \left( 1 - \sum_{i \in bkg} f_i \right) + \left[ A_D + \sum_{i \in bkg} f_i A_P^i \right]$$

Bkg decays

$$B^{0} \to D^{0}D_{s}^{(*)+}X$$

$$B^{0} \to D^{-}D_{s}^{(*)+}X$$

$$B_{s}^{0} \to D_{s}^{(*)-}D_{s}^{(*)+}$$

$$\Lambda_{b}^{0} \to \Lambda_{c}^{+}D_{s}^{(*)+}X$$

$$B^{-} \to D_{s}^{+}K^{-}\mu^{-}\nu X$$

$$\overline{B}^{0} \to D_{s}^{+}K_{s}^{0}\mu^{-}\nu X$$

 $B^+ \to D^{(*)0} D_e^{(*)+} X$ 

$$\sum_{i \in bkg} f_i = (18 \pm 6)\%$$
$$\sum_{i \in bkg} f_i A_P^i = -0.045 \pm 0.033)\%$$

[Phys. Rev. Lett. 117, 061803 (2016)] 15

### Nuisance asymmetries

$$A_{raw} = \frac{a_{sl}}{2} \left(1 - \cos(\Delta mt)\right) + \left[\frac{A_D}{P} + \frac{A_P}{P}\cos(\Delta mt)\right]$$

#### Production asymmetry

 $A_P = \frac{\sigma(pp \to B X) - \sigma(pp \to \overline{B}X)}{\sigma(pp \to B X) + \sigma(pp \to \overline{B}X)}$ 



Detection asymmetry

$$A_D = \frac{\epsilon \ (B \to f) \ - \epsilon(\overline{B} \to f)}{\epsilon \ (B \to f) + \epsilon(\overline{B} \to f)}$$



#### Production asymmetry

Measured for all B species as function of  $p_T$  and  $\eta$ .



[Phys. Lett. B739 (2014) 218, Phys. Lett. B 774 (2017) 139-158]

#### Detection asymmetry

[Phys. Rev. Lett. 117, 061803 (2016)]

[Talk by Jacco Devries]

![](_page_17_Figure_3.jpeg)

![](_page_17_Figure_4.jpeg)

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)

Well established data-driven methods to evaluate these effects!

 $a_{sl}^a$  and  $a_{sl}^s$ 

≻Both results use LHCb Run I data.

 $a_{sl}^d = (-0.02 \pm 0.19 \pm 0.30) \%$ 

 $a_{sl}^s = (0.39 \pm 0.26 \pm 0.20) \%$ 

- Nuisance asymmetries dominate systematics but scale with sample size.
- Full Run 2 updates in-progress:
   50% reduction in σ<sub>stat</sub>.
   30% reduction in σ<sub>syst</sub>.

![](_page_18_Figure_6.jpeg)

### New physics induced CPV in decay

### CPV in decay

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

**Triple Product asymmetry (T-odd):** 

 $A_{T-odd} \propto \sin(\Delta \phi) \cos(\Delta \delta)$ 

$$\operatorname{Maximal when } \Delta \delta = 0$$

![](_page_20_Figure_6.jpeg)

### Which specific decay channels?

#### **Direct CP asymmetry (CP-odd):**

 $A_{CP}^{dir} \propto \sin(\Delta \phi) \frac{\sin(\Delta \delta)}{\sin(\Delta \delta)}$ 

Requires  $\Delta \phi \neq 0$  and  $\Delta \delta \neq 0$ .

#### **Triple Product asymmetry (T-odd):**

 $A_{T-odd} \propto \sin(\Delta \phi) \cos(\Delta \delta)$ 

Maximal when  $\Delta \delta = 0$ 

#### [Y Grossman et al]

SL decays with excited charm(less) states

Mesons:  $B^- \to D^{**0} l^- \nu$  and  $B^- \to (\pi^+ \pi^-) l^- \nu$ . Baryons:  $\Lambda_b^0 \to \Lambda_c^{*+} l^- \nu$  and  $\Lambda_b \to N^* l^- \nu$ )

[D London et al]

SL decays with charm(less) states

Mesons:  $B^0 \to D^{(*)+} l^- \nu$  and  $B^0 \to \pi^+ l^- \nu$ , Baryons:  $\Lambda_b^0 \to \Lambda_c^+ l^- \nu$  and  $\Lambda_b \to p l^- \nu$ )

 $A_{CP}^{dir}$ : Strong phase in  $B^- \to D^{**} \tau \nu$ 

#### Predicted spectrum of $c\overline{u}$ resonances

![](_page_22_Figure_2.jpeg)

Various  $c\overline{u}$  resonances with same  $J^P$  interfer to give strong phase  $\Delta\delta$ .

$$A_{CP}^{dir}$$
: Weak phase in  $B^- \rightarrow D^{**} \tau \nu$ 

![](_page_23_Figure_1.jpeg)

New physics with different Lorentz structures give rise to weak phase  $\Delta \phi$ .

# $A_{CP}^{dir}$ : Problems and Solutions

#### **Problem 1**

- ➤Large uncertainties in BFs by B-factories [1,2,3] and now LHCb [Guy's talk].
- ➢ Form factors not—so well known [F. Bernlochner et al].
- $\rightarrow$  Investigate observables insensitive to these effects e.g. corrected mass.

$$M_{\rm corr}(\Lambda_b^0) = \sqrt{m_{\rm vis}^2 + p_{\perp}^2} + p_{\perp}$$

$$\mu_{\rm vis} + p_{\perp}^2 + p_{\perp}$$

$$\mu_{\rm vis} + p_{\perp}$$

$$\mu_{\rm vis} + p_{\perp}$$

$$\mu_{\rm vis} + p_{\perp}$$

$$\mu_{\rm vis} + p_{\perp}$$

Corrected mass [Units of energy]

# $A_{CP}^{dir}$ : Problems and Solutions

#### Problem 2

≻Hard to disentangle  $B^- \rightarrow D^{**}\tau\nu$  from bkgs.

 $\rightarrow$  Don't, bkg's don't exhibit no CP violation (highly suppressed).

#### Signal:

- Semitauonic:  $B^- \to D^{**} \tau \nu$
- Bkg double charm:  $B^{-,0} \to D^{**}X_c (\to \mu X)X$

![](_page_25_Picture_7.jpeg)

Corrected mass [Units of energy]

# $A_{CP}^{dir}$ : Problems and Solutions

#### Problem 3

≻Require control over nuisance asymmetries.

 $\rightarrow$  Use control channel with same initial and final state to cancel the nuisance asymmetries.

![](_page_26_Figure_4.jpeg)

Corrected mass [Units of energy]

Measure  $\Delta A_{CP}^{dir} = A_{raw}^{control} - A_{raw}^{signal}$  in phase space bins.

(Preliminary) Sensitivity to  $\Delta A_{CP}^{dir}$ 

![](_page_27_Figure_1.jpeg)

With Run 2 and Run 3 data expect around 300k events (0.1% sel. Eff).  $∆A_{CP} ≠ 0$  would be a smoking gun signal for NP!

## Triple products (TP) in $B^0 \rightarrow D^{*-}\mu\nu$

$$\frac{d^{4}\Gamma}{dq^{2} d \cos \theta_{\ell} d \cos \theta^{*} d\chi} = \frac{3}{8\pi} \frac{G_{F}^{2} |V_{cb}|^{2} (q^{2} - m_{\ell}^{2})^{2} |p_{D^{*}}|}{2^{8}\pi^{3} m_{B}^{2} q^{2}} \times \mathcal{B}(D^{*} \rightarrow D\pi) \left( N_{1} + \frac{m_{\ell}}{\sqrt{q^{2}}} N_{2} + \frac{m_{\ell}^{2}}{q^{2}} N_{3} \right)$$
Interested only in terms  $Im(A_{i}A_{j}^{*})$ 

$$\frac{Amplitude term}{Im(\mathcal{A}_{\perp}\mathcal{A}_{0}^{*})} \frac{Coupling}{Im[(1 + g_{L} + g_{R})(1 + g_{L} - g_{R})^{*}]} - \sqrt{2} \sin 2\theta_{\ell} \sin 2\theta_{D} \sin \chi}{Im(\mathcal{A}_{\parallel}\mathcal{A}_{\perp,T}^{*})} \frac{Im[(1 + g_{L} - g_{R})(1 + g_{L} + g_{R})^{*}]}{Im(g_{F}g_{T}^{*})} - 8\sqrt{2} \sin \theta_{\ell} \sin 2\theta_{D} \sin \chi}$$

Angular terms  $Im(A_iA_j^*)$  non-zero in two cases:

- Rel. strong phase only  $\rightarrow$  fake CPV signal ( $\equiv 0$  in both SM and NP for these decays.)
- Rel. weak phase only  $\rightarrow$  true CPV signal ( $\equiv 0$  in SM but  $\neq 0$  in NP).

### Triple products (TP) in $B^0 \rightarrow D^{*-}\mu\nu$

[A Poluektov and Vlad Dedu]

$$P_{\text{tot}}(\Omega) = \begin{array}{c} P_{\text{even}} (\Omega) + \begin{array}{c} P_{\text{odd}} (\Omega) \\ P_{\text{odd}}(\Omega) = P_{\text{odd}}^{(1)} \sin \chi + P_{\text{odd}}^{(2)} \sin 2\chi \end{array} \qquad \Omega = (q^2, \theta_D, \theta_\ell, \chi)$$

Extract the two angular functions  $(P_{odd}^{(1)})$  and  $P_{odd}^{(2)}$  from total PDF

**Unbinned true observables** 

**Binned reconstructed observables** 

$$P_{\text{odd}}^{(1)} = \frac{1}{\pi} \int_{-\pi}^{\pi} P_{\text{tot}}(\Omega) \sin \chi d\chi \qquad \qquad A_i^{(1)} = \frac{N_{\text{bins}}}{N_{\text{signal}}} \sum_{n=1}^{N_i} \sin \chi_n \simeq \text{Im}(g_{\text{R}}) A_{RH,i}^{(1)} + \text{Im}(g_{\text{P}}g_{\text{T}}^*) A_{PT,i}^{(1)}$$

$$P_{\text{odd}}^{(2)} = \frac{1}{\pi} \int_{-\pi}^{\pi} P_{\text{tot}}(\Omega) \sin 2\chi d\chi \qquad \qquad A_i^{(2)} = \frac{N_{\text{bins}}}{N_{\text{signal}}} \sum_{n=1}^{N_i} \sin 2\chi_n \simeq \text{Im}(g_{\text{R}}) A_{RH,i}^{(2)}$$

Sum all  $N_i$  events in  $i^{th}$  bin of  $[q^2, \cos(\theta_D), \cos(\theta_l)]$ 

30

### TP: Asymmetries in $B^0 \rightarrow D^{*-}\mu\nu$

![](_page_30_Figure_1.jpeg)

**Clear trends when weak phase is non-zero** 

### TP: Fit and systematics

#### [A Poluektov and Vlad Dedu]

- Perform  $\chi^2$  fit considering correlation b/w  $\sin(\chi)$  and  $\sin(2\chi)$ .
- Signal and bkg discrimination from 3D fit:  $q^2$ ,  $m_{miss}^2$  and  $E_{\mu}^*$ .

≻Systematics:

- CP asymmetry: Non-physics bkg.
- Instrumental effects (e.g., tracking system misalignment)
- Non-uniform reconstruction efficiency.

$$\chi^2_{\rm corr} = \sum_i \sum_{a,b=1,2} \Delta A_i^{(a)} \ \left( \Sigma_i^{-1} \right)^{(ab)} \ \Delta A_i^{(b)}$$

![](_page_31_Figure_9.jpeg)

Misalignment of velo modules  $\rightarrow$  Bias in vertex position  $\rightarrow$  Bias in sin( $\chi$ )

## TP: Expected sensitivity in $B^0 \rightarrow D^{*-}\mu\nu$

- ➢Triple-product-like CP asymmetries (and P asymmetries) probed.
- Run 2 data provides sensitivity to  $Im(g_R)$ and  $Im(g_P g_T^*)$ .
- Dominant systematic is due to detector misalignments.

Future work to extend this  $B^0 \to D^{*-} \tau \nu$ .

#### [<u>A Poluektov and Vlad Dedu</u> and Vlad's thesis]

| Assigned systematic        | $\Delta \operatorname{Im}(g_R)$ | $\Delta \operatorname{Im}(g_P g_T^*)$ |
|----------------------------|---------------------------------|---------------------------------------|
| Misid                      | $0.85	imes10^{-3}$              | $2.45 	imes 10^{-4}$                  |
| Fake <i>D</i> * comb       | $0.40	imes10^{-3}$              | $0.70	imes10^{-4}$                    |
| True <i>D</i> * comb       | $1.45	imes10^{-3}$              | $1.98	imes10^{-4}$                    |
| $T_y 2 \mu$ m misalignment | $4.16 	imes 10^{-3}$            | $4.33 	imes 10^{-4}$                  |
| Control sample             | $2.78 	imes 10^{-3}$            | $6.12	imes10^{-4}$                    |
| Total                      | $5.82 	imes 10^{-3}$            | $0.92	imes10^{-3}$                    |

#### CP asymmetries:

$$\begin{split} \mathrm{Im}(\mathrm{g_R}) &= (\mathsf{X}.\mathsf{X}\mathsf{X} \pm 0.51 \text{ (stat.)} \pm 0.58 \text{ (syst.)})\%, \\ \mathrm{Im}(\mathrm{g_Pg_T^*}) &= (\mathsf{X}.\mathsf{X}\mathsf{X} \pm 0.13 \text{ (stat.)} \pm 0.09 \text{ (syst.)})\%. \end{split}$$

#### Central values are blinded.

### Summary and conclusions

- CP symmetry in SL decays offers powerful null tests of the SM.
- Signal and bkg separation in LFU is replaced by established methods for handling nuisance asymmetries in CPV.
- Full Run 2 updates on CPV in mixing  $(a_{sl})$  with SL decays on the way.
- Prospects to explore direct CPV in  $B \rightarrow D^{**} \tau \nu$  decays with Run II and III data.
- Triple-product-like CP asymmetries in  $B \rightarrow D^* \mu \nu$  studied including systematic effects.
- Exciting new precision tests with SL decays ahead!

## Backup

 $a_{ls}^{s}$  bkg fractions

| Mode                                                 | ${\cal B} \ [\%]$    | $\mathcal{B}(c \to \mu) \ [\%]$ | $\varepsilon_{ m sig}/arepsilon_{ m bkg}$ | $f_{ m bkg}/f_{ m sig}~[\%]$ | $A_{\rm bkg}$ [%] |
|------------------------------------------------------|----------------------|---------------------------------|-------------------------------------------|------------------------------|-------------------|
| $B^+ \to D^{(*)0} D_s^{(*)+} X$                      | $7.9 \pm 1.4$        | $6.5\pm0.1$                     | 4.34                                      | $5.8 \pm 1.1$                | $-0.6\pm0.6$      |
| $B^0 \to D^0 D_s^{(*)+} X$                           | $5.7 \pm 1.2$        | $6.5\pm0.1$                     | 4.08                                      | $4.4\pm1.0$                  | $-0.18\pm0.13$    |
| $B^0 \to D^- D_s^{(*)+} X$                           | $4.6 \pm 1.2$        | $16.1\pm0.3$                    | 6.41                                      | $5.6 \pm 1.5$                | $-0.18\pm0.13$    |
| $B_s^0 \to D_s^{(*)-} D_s^{(*)+}$                    | $4.5\pm1.4$          | $8.1\pm0.4$                     | 3.68                                      | $1.0 \pm 0.3$                | _                 |
| $\Lambda_b^0 \to \Lambda_c^+ D_s^{(*)+} X$           | $10.3^{+2.1}_{-1.8}$ | $4.5\pm1.7$                     | 4.51                                      | $3.0 \pm 1.4$                | $+0.5\pm0.8$      |
| $B^- \to D_s^+ K^- \mu^- \nu X$                      | $0.061\pm0.010$      | _                               | 2.43                                      | $1.3 \pm 0.2$                | $0.6 \pm 0.6$     |
| $\overline{B}{}^0 \to D_s^+ K_{\rm s}^0 \mu^- \nu X$ | $0.061\pm0.010$      | —                               | 2.89                                      | $1.1\pm0.2$                  | $0.18\pm0.13$     |

 $a_{sl}$  systematics

 $a_{sl}^d$ 

| $a^{S}$         | S |  |  |
|-----------------|---|--|--|
| u <sub>sl</sub> |   |  |  |

| Source of uncertainty        | $a_{\rm sl}^d$ | $A_{\rm P}(7{\rm TeV})$ | $A_{\rm P}(8{\rm TeV})$ |
|------------------------------|----------------|-------------------------|-------------------------|
| Detection asymmetry          | 0.26           | 0.20                    | 0.14                    |
| $B^+$ background             | 0.13           | 0.06                    | 0.06                    |
| $\Lambda_b^0$ background     | 0.07           | 0.03                    | 0.03                    |
| $B_s^0$ background           | 0.03           | 0.01                    | 0.01                    |
| Combinatorial $D$ background | 0.03           | _                       | _                       |
| k-factor distribution        | 0.03           | 0.01                    | 0.01                    |
| Decay-time acceptance        | 0.03           | 0.07                    | 0.07                    |
| Knowledge of $\Delta m_d$    | 0.02           | 0.01                    | 0.01                    |
| Quadratic sum                | 0.30           | 0.22                    | 0.17                    |

| Source                            | Value | Stat. uncert. | Syst. uncert. |   |
|-----------------------------------|-------|---------------|---------------|---|
| $A_{\rm raw}$                     | 0.11  | 0.09          | 0.02          |   |
| $-A_{\rm track}(K^+K^-)$          | 0.01  | 0.00          | 0.03          |   |
| $-A_{\rm track}(\pi^-\mu^+)$      | 0.01  | 0.05          | 0.04          |   |
| $-A_{\mathrm{PID}}$               | -0.01 | 0.02          | 0.03          |   |
| $-A_{\rm trig}({\rm hardware})$   | 0.03  | 0.02          | 0.02          |   |
| $-A_{\rm trig}({\rm software})$   | 0.00  | 0.01          | 0.02          |   |
| $-f_{\rm bkg} A_{\rm bkg}$        | 0.02  | —             | 0.03          | + |
| $(1 - f_{\rm bkg})a_{\rm sl}^s/2$ | 0.16  | 0.11          | 0.08          |   |
| $2/(1-f_{\rm bkg})$               | 2.45  | _             | 0.18          | × |
| $a_{ m sl}^s$                     | 0.39  | 0.26          | 0.20          |   |