

New physics searches with angular analyses of b-hadron decays

Lucia Grillo

with input from Greg Ciezarek, Biljana Mitreska, Hasret Nur, Marcello Rotondo, and others

Challenges of semileptonic b-hadron decays 25 September 2024

Differential measurements of b-hadron decays

- Helicity angles distributions (and derived observables) are sensitive to New Physics contributions and hadronic interactions (Form Factors)
- Angular analyses: New Physics searches, complementary to Lepton Universality tests
- Hadronic Form Factors measurements
- In this talk: latest results and ongoing $H_b \to H_c \ell \nu$ studies

2

Experimental datasets

- Constrained kinematics
- Cleaner environment
- Electrons as good as muons

Focus on LHCb B meson analyses (see Anna's talk for baryons)

- Unconstrained kinematics
- Different background composition (hadron collision environment, partial reconstruction etc)
- Larger boost
- Unprecedentedly sized samples
- Full suite of hadron species available

Challenges of SL b-hadron decays

Light leptons

- At LHCb muons are clearly easier (results with light leptons so far use muons)
 - Fewer electrons than muons @LHCb with worse resolution, but less noticeable with unconstrained kinematics
- > Partial reconstruction, but good options with just one missing particle
 - Longitudinal neutrino (or B) momentum component known up to a two-fold ambiguity
 - Pick one solution randomly
 - Use linear regression prediction
 <u>G. Ciezarek et. al, JHEP 2 (2017) 021</u>
 - Used proxy variable(s) (e.g.
 <u>Phys. Rev. D101 (2020) 072004</u>)

Light leptons: shape & hadronic form factors measurements

Measurement of the shape of the $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_\mu$ decay rate

Fully reconstruct $D_s^{*-} \rightarrow D_s^- \gamma$

HEP 12 (2020) 144

Signal yield measured in bins of hadronic recoil parameter $w = v_{B_c^0} \cdot v_{D_c^{*-}}$

Unfolded efficiency corrected yields+ correlation matrix in the paper

Light leptons: shape & hadronic form factors measurements

Measurement of the shape of the $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ decay rate

- Fully reconstruct $D_s^{*-} \rightarrow D_s^- \gamma$
- Signal yield measured in bins of hadronic recoil parameter $w = v_{B_c^0} \cdot v_{D_c^{*-}}$

CLN fit	
Unfolded fit Unfolded fit with massless leptons Folded fit	$\rho^{2} = 1.16 \pm 0.05 \pm 0.07$ $\rho^{2} = 1.17 \pm 0.05 \pm 0.07$ $\rho^{2} = 1.14 \pm 0.04 \pm 0.07$
BGL fit	
Unfolded fit	$a_1^f = -0.005 \pm 0.034 \pm 0.046$ $a_2^f = 1.00^{+0.00}_{-0.19} + 0.00$
Folded fit	$a_1^f = 0.039 \pm 0.029 \pm 0.046$ $a_2^f = 1.00^{+0.00}_{-0.13} + 0.046$

Already a few analyses sensitive to hadronic FF parameters

First measurement of	$\left V_{cb}\right $ using	$B_s^0 \rightarrow$	$D_{s}^{(*)-}$	$-\mu^+\nu_\mu$
		3	3	i po

- Measure rate relative to $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$
- Requires external inputs for $\left|V_{cb}
 ight|$
- Measurement of decay rate as a function of $p_{\perp}(D_s^-)$, proxy for q^2 or recoil w ($D_s^{(\ast)-}$ energy in the B_s^0 rest frame)

Parameter	Value			
$ V_{cb} $ [10 ⁻³]	42.3	± 0.8	$(\text{stat}) \pm 1.2$	(ext)
$\mathcal{G}(0)$	1.097	± 0.034	$(\text{stat}) \pm 0.001$	(ext)
d_1	-0.017	± 0.007	$(\text{stat}) \pm 0.001$	(ext)
d_2	-0.26	± 0.05	$(\text{stat}) \pm 0.00$	(ext)
$b_1 a_1^f$	-0.06	± 0.07	$(\text{stat}) \pm 0.01$	(ext)
$a_0 a_0^{g}$	0.037	± 0.009	$(\text{stat}) \pm 0.001$	(ext)
$a_1 a_1^g$	0.28	± 0.26	$(\text{stat}) \pm 0.08$	(ext)
$c_1 a_1^{\mathcal{F}_1}$	0.0031	1 ± 0.0022	$2(\mathrm{stat})\pm0.0006$	$5(\mathrm{ext})$

Sensitivity to hadronic form factors also from many more measurements, e.g. LFU ratios (dedicated measurements being worked on) <u>LHCb-PAPER-2022-039</u>

Tau leptons

Fit to background-enriched regions essential to control backgrounds

Can take advantage of the more constrained kinematics and tau decay vertex

D* polarisation fraction

- Run1 + partial Run2 (5fb⁻¹), hadronic τ decay
 - ▶ Background treatment similar to $R(D^*)$ analysis (<u>PRD 108, 012018</u>) → Data
 - 4D-binned templated fit to τ decay time, anti- D_s BDT output, $\cos\theta_{\rm D}$ and $q^2(q^2 \leq 7 {\rm GeV}^2/{\rm c}^4)$
 - 2 signal components: polarised & unpolarised

0.9

0.8

0.7

0.5

0.4

3

1

₹ 0.6

Main systematic uncertainties from size of simulated samples, FF parameterisation and double-charm background modelling.

 $\cos\theta_D$

The presence of new mediators8impacts the polarisation fraction

SM

 $q^2(\text{GeV}^2)$

6

 C_{S_L}

5

PRD 95 (2017) 115038

 C_{S_R}

9

10

D* polarisation fraction

Extending differential measurements: decay angles

- Natural extension: describe the fully differential decay rate
- $B^0 \rightarrow D^* \mu \nu$ decays
- Solution of quadratic equation (solid) compared to B rest frame approximation (dashed)

 ℓ

Π

Extending differential measurements: decay angles

- Natural extension: describe the fully differential decay rate
- $B^0 \rightarrow D^* \tau \nu$ decays
- Angular resolutions (worst case: B rest frame approximation, τ leptons)

L. Grillo (UofG)

11

Angular Coefficients

- Fully differential decay rate
- Helicity angles (and derived observables) are sensitive to New Physics contributions and hadronic interactions (Form Factors)

$$\frac{d\Gamma(B \to D^* \ell \nu)}{dwd\cos\theta_{\ell} d\cos\theta_{d} d\chi} = \frac{3m_{B}^{3}m_{D^*}^{2}G_{F}^{2}}{16(4\pi)^{4}} \eta_{EW} |V_{cb}|^{2} \sum_{i}^{6} \mathscr{H}_{i}(w)k_{i}(\theta_{\ell}, \theta_{D}, \chi)$$

$$\frac{i \quad \mathcal{H}_{i}(w) \quad \frac{k_{i}(\theta_{\mu}, \theta_{D}, \chi)}{D^* \to D\gamma \qquad D^* \to D\pi^{0}}$$

$$\frac{1 \quad H_{+}^{2}}{2 \quad H_{-}^{2}} \quad \frac{\frac{1}{2}(1 + \cos^{2}\theta_{D})(1 - \cos\theta_{\mu})^{2}}{1 + (1 + \cos^{2}\theta_{D})(1 + \cos\theta_{\mu})^{2}} \quad \sin^{2}\theta_{D}(1 - \cos\theta_{\mu})^{2}}{3 \quad H_{0}^{2}} \quad 2 \sin^{2}\theta_{D} \sin^{2}\theta_{\mu} \qquad 4 \cos^{2}\theta_{D} \sin^{2}\theta_{\mu}}$$

$$4 \quad H_{+}H_{-} \qquad \sin^{2}\theta_{D} \sin^{2}\theta_{\mu} \cos\chi \qquad -2\sin^{2}\theta_{D} \sin^{2}\theta_{\mu} \cos\chi$$

$$5 \quad H_{+}H_{0} \quad \sin 2\theta_{D} \sin\theta_{\mu}(1 - \cos\theta_{\mu})\cos\chi \qquad 2\sin^{2}\theta_{D} \sin\theta_{\mu}(1 - \cos\theta_{\mu})\cos\chi$$

 ℓ

 θ_{ℓ}

W

B

- Full description using the possible three helicity states of the D* measuring the angular coefficients does not separate hadronic and NP effects, but also doesn't make assumptions
- Measuring the 12 angular coefficients (ok to integrate in q^2 ? or w D. Hill et.al., JHEP 11 (2019) 133)
- Ongoing measurements of $B^0 \to D^* \ell \nu$ and $B^0_s \to D^*_s \ell \nu$

12

D

 $\boldsymbol{\theta}_{D}$

Angular Coefficients

- Measurement of the angular coefficients of $B \rightarrow D^* \ell \nu$ using the full Bell dataset and hadronic B tagging, including both charged and neutral B mesons
- The signal yield in bins of the angles, w and decay mode is determined using the $M_{\text{miss}}^2 = (p_{e+e-} p_{\text{tag}} p_{D^*} p_{\ell})^2$

ΔX =	$= X^{\mu}$ -	$-X^e$
	-	

χ^2 / ndf	p-value
1.7 / 4	0.79
2.3 / 4	0.67
5.3 / 4	0.26
4.2 / 4	0.38
4.6 / 4	0.33
5.0 / 4	0.28
7.4 / 4	0.12
2.5 / 4	0.64
4.8 / 4	0.31
2.1 / 4	0.72
1.1 / 4	0.89
1.6 / 4	0.81
3.3 / 4	0.51
4.6 / 4	0.33
41 / 48	0.76
	$\begin{array}{c c} \chi^2 \ / \ \mathrm{ndf} \\ \hline 1.7 \ / \ 4 \\ 2.3 \ / \ 4 \\ \hline 2.3 \ / \ 4 \\ \hline 5.3 \ / \ 4 \\ 4.2 \ / \ 4 \\ \hline 4.6 \ / \ 4 \\ \hline 5.0 \ / \ 4 \\ \hline 7.4 \ / \ 4 \\ \hline 2.5 \ / \ 4 \\ \hline 4.8 \ / \ 4 \\ \hline 2.1 \ / \ 4 \\ \hline 1.1 \ / \ 4 \\ \hline 1.6 \ / \ 4 \\ \hline 3.3 \ / \ 4 \\ \hline 4.6 \ / \ 4 \\ \hline 41 \ / \ 48 \end{array}$

arXiv:2310.20286

In agreement with previous analysis (<u>PRD 108(2023) 012002</u>) and HFLAV inclusive, no deviation from SM in LFU tests

L. Grillo (UofG)

Challenges of SL b-hadron decays

More in Markus' talk

25/09/2024

Angular Coefficients: $B_s^0 \rightarrow D_s^* \mu \nu$ F. Manganella's thesis, courtesy M. Rotondo ¹⁴

• Building upon JHEP 12 (2020) 144 : binned folded and unfolded fit over 4-d space. Fully differential decay rate: • Use CLN and BGL to parametrise $I_i(q^2)$

Tension (similar with Belle <u>J. Harrison, C.T.H. Davies, arXiv:2304.03137</u> but different binning)

L. Grillo (UofG)

Challenges of SL b-hadron decays

Additional ideas: CPV observables

 $\frac{d\Gamma(B \to D^* \ell \nu)}{dw d\cos\theta_\ell d\cos\theta_d d\chi} = (P_{\text{even}} + P_{\text{odd}})$

V. Dedu and A. Poluektov, arXiv:2304.00966

 $P_{\text{odd}} \equiv 0$ in SM, but can have non-zero terms in NP:

	Amplitude term	Coupling	Angular function
~	$\operatorname{Im}(\mathcal{A}_{\perp}\mathcal{A}_{0}^{*})$	$\text{Im}[(1+g_L+g_R)(1+g_L-g_R)^*]$	$-\sqrt{2}\sin 2\theta_{\ell}\sin 2\theta_{D}\sin \chi$
\rightarrow	$\operatorname{Im}(\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*})$	$\mathrm{Im}[(1+g_L-g_R)(1+g_L+g_R)^*]$	$2\sin^2\theta_\ell\sin^2\theta_D\sin 2\chi$
	$\operatorname{Im}(\mathcal{A}_{SP}\mathcal{A}^*_{\perp,T})$	${ m Im}(g_Pg_T^*)$	$-8\sqrt{2}\sin\theta_{\ell}\sin 2\theta_{D}\sin\chi$
\checkmark	$\operatorname{Im}(\mathcal{A}_{0}\mathcal{A}_{\parallel}^{*})$	$Im[(1 + g_L - g_R)(1 + g_L + g_R)^*]$	$\frac{-2\sqrt{2}\sin\theta_{\ell}\sin2\theta_{D}\sin\chi}{2}$

Right-handed vector

Interference of pseudo scalar and tensor currents

 Express sinχ using the momenta of reconstructible decay products and B momentum estimate for quadratic eq.

 $\sin\chi = S_1 \cdot (\overrightarrow{p}_{\pi}, \overrightarrow{p}_{\mu}, \overrightarrow{p}_D) + S_2 \cdot (\overrightarrow{p}_B, \overrightarrow{p}_{\mu}, \overrightarrow{p}_D) + S_3 \cdot (\overrightarrow{p}_{\pi}, \overrightarrow{p}_B, \overrightarrow{p}_D) + S_4 \cdot (\overrightarrow{p}_{\pi}, \overrightarrow{p}_{\mu}, \overrightarrow{p}_B)$

- sinx is P-odd and can be used as per-event weight to cancel out the P-even contribution in data
- On going dedicated analysis optimised for CPV observables

New Physics Wilson Coefficients

What if we want to tell apart all possible NP contributions(s)

Wilson coefficients $C_{i} = C_{i}^{SM} + C_{i}^{NP}$ $\mathcal{H}_{eff} = \frac{G_{F}}{\sqrt{2}} V_{cb} \sum_{i} \overset{\downarrow}{C_{i}} C_{i} \mathcal{O}_{i}$

- HAMMER tool (F. Bernlochner, S. Duell, Z. Ligeti, M. Papucci, D. Robinson, <u>Eur. Phys. J. C 80, 883 (2020)</u>) to re-weight MC events and obtain "dynamic" templates, (for-)folding in the experimental resolution
- Extract Wilson Coefficients and hadronic Form Factor parameters from a fit to data (<u>JINST 17 T04006</u>)

Exploiting angular observables

- Measuring $B^0 \rightarrow D^* \mu \nu$ as benchmark
- $\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} V_{cb} \sum_{i} \underbrace{C_i \mathcal{O}_i}_{\text{SM}}$ Aim: extend R(D) vs $R(D^*)$ measurement to include angular variables and with NP WC in signal parametrisation

 $\mathcal{R}e(V_{qRlL}) = \{-0.5, -0.2, -0.1, 0.0, 0.1, 0.2, 0.5\}$

L. Grillo (UofG)

Challenges of SL b-hadron decays

 $= \frac{G_F}{\sqrt{2}} V_{cb} \Big[(1+g_V) \bar{c} \gamma_\mu b + (-1+g_A) \bar{c} \gamma_\mu \gamma_5 b \Big]$

Exploiting angular observables: $B^0 \rightarrow D^* \mu \nu$

- Extract directly Wilson Coefficients and FF parameters from fit to data
- Shape analysis no attempt to measure $\left|V_{cb}
 ight|$
- SM fits: CLN (<u>Nuclear Physics B 530 (1998)</u> <u>153-181</u>), BGL (<u>Phys.Rev. D56 (1997)</u> <u>6895-6911</u>) and BLPR parametrisation for hadronic FF
- NP fits: BLPR parametrisation (F. Bernlochner et. al. <u>Phys. Rev. D 95, 115008 (2017)</u>)
- High statistics $B^0 \rightarrow D^* \mu \nu$ sample(s), could fit for hadronic FF parameters and NP WC at the same time, if correlations allow
- First sensitivity estimates <u>B. Mitreska CERN-</u> <u>THESIS-2022-105</u>

Example of fit projection for single pseudo-experiment, courtesy H. Nur

18

Exploiting angular observables: $B^0 \rightarrow D^* \mu \nu$

- Ideally no assumption about the NP structure (<u>Eur. Phys. J. C 80, 883 (2020</u>))
- In practice easier to search for specific NP models (e.g. Bhattacharya et. al. JHEP 05 (2019) 191) or allowing one NP WC at a time

L. Grillo (UofG)

Challenges of SL b-hadron decays

Even before adding angular observables

- Expanding on $R(D^+)$ vs $R(D^{*+})$ measurement (<u>LHCb-PAPER-2024-007</u>)
- Modify signal and normalisation models to include NP contributions
- Pseudo-experiments study: no NP assumed in muon modes, NP assumed left-handed $(V_{LR} = V_{RR} = S_{LR} = S_{RR} = T_{RR} = 0), S_L^+ = \frac{S_{LL} + S_{RL}}{2}, S_L^- = \frac{S_{LL} - S_{RL}}{2}$
- Confirmed no significant difference when floating or fixing FF (BLPR) parameters and some sensitivity to NP Wilson Coefficients [preliminary study to be followed up]

- First differential decay rate measurements of semileptonic decays performed also at LHCb
- Different advantages and challenges wrt measurements performed at the b-factories: essential to take advantage of the complementarity
- Work on-going to perform angular analyses using different approaches
- Not many results today... stay tuned!

Backup

Even before adding angular observables

- Expanding on $R(D^+)$ vs $R(D^{*+})$ measurement (<u>LHCb-PAPER-2024-007</u>)
- Modify signal and normalisation models to include NP contributions
- Pseudo-experiments study: no NP assumed in muon modes, NP assumed left-handed $(V_{LR} = V_{RR} = S_{LR} = S_{RR} = T_{RR} = 0), S_L^+ = \frac{S_{LL} + S_{RL}}{2}, S_L^- = \frac{S_{LL} - S_{RL}}{2}$
- Confirmed no significant difference when floating or fixing FF (BLPR) parameters and some sensitivity to NP Wilson Coefficients [preliminary study to be followed up]

L. Grillo (UofG)

Challenges of SL b-hadron decays

23

25/09/2024

$B^0 \to D^{(*)} \tau \nu$

- Ideally shape + rate analysis, i.e. R(D) vs R(D*) determination simultaneous to WC
- Sensitivity studies need to include the full set of (at times poorly known) backgrounds

Becirevic et.al. arXiv:1602.03030

$B^0 \to D^{(*)} \tau \nu$

- Ideally shape + rate analysis, i.e. R(D) vs R(D*) determination simultaneous to WC
- Sensitivity studies need to include the full set of (at times poorly known) backgrounds
- Better angular resolutions when using 3-prong hadronic tau decays

D. Hill et.al., JHEP 11 (2019) 133

Baryons: $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}$

- Probing baryonic decays different spin structure
- Measurement of the shape of the differential decay rate using Run-I dataset
- Low background level and smooth acceptance across decay variables

Lattice Phys. <u>Rev. D92 (2015) 034503</u> (grey band)

Unfolded data distribution described by single form factor fit (blue line)

Baryons: $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}$

- Study of the sensitivity with collected samples to Real NP Wilson Coefficients for decays with zero and non-zero Ab polarisation
- 2D Fits to q²and cosθµ for zero polarisation case
- Sensitivity compared to global fits to B→D(*)lv
 (<u>M. Jung, D.M. Straub, JHEP 01 (2019) 009</u>)

M. Ferrillo et. al., JHEP 12 (2019) 148

Free parameters	$pK_{\rm S}^0$ case	$pK^{-}\pi^{+}$ case
C_{V_R}	0.005	0.001
C_{S_R}	0.046	0.018
C_{T_L}	0.020	0.007
C_{S_L}	0.091	0.039
$P_{\Lambda_b^0}$	0.13	_
$lpha_{\Lambda_c^+}$	0.003	—

Challenges of SL b-hadron decays

Additional ideas: CPV observables

 $\frac{d\Gamma(B \to D^* \ell \nu)}{dw d\cos\theta_\ell d\cos\theta_d d\chi} = (P_{\text{even}} + P_{\text{odd}})$

- **Dedicated analysis** optimised for CPV observables
- Statistical sensitivity with Run1+2 $B^0 \rightarrow D^* \mu \nu$ sample :~1% for Im(gR), 0.1% lm(gPgT*)
- A number of possible systematic uncertainties estimated: double-charm and D** backgrounds, detection asymmetry and detector misalignment

VELO misalignment $T_v = 10 \mu m$ $Im(g_R) = 0.1$ 0.04 (in χ weight) Asymmetry (sin χ weight) 1.00.010 $\cos \theta_D$ Asymmetry $(\sin \chi \text{ weight}) \cos \theta_D$ (b) 0.04(a) 0.50.0050.50.020.000.000 0.0 0.0-0.005-0.5-0.5-0.04-1.0 -1.0 -0.010-0.50.00.5-0.50.00.51.01.0-1.0 $\cos \theta_{\ell}$ $\cos \theta_{\ell}$ $\begin{array}{ccc} & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ \text{Asymmetry (sin 2<math>\chi$ weight)} \\ \text{cos} \theta_D \\ \text{cos} \theta_D \end{array} 0.04 (in χ weight) 0.02 0.00 −0.02 1.0 $\cos \theta_D$ (d) 0.04(c) 0.0050.50.50.020.000.000 0.0 0.0

-0.5

-1.0 -1.0

-0.5

0.0

-0.010

1.0

 $\cos \theta_{\ell}$

V. Dedu and A. Poluektov, arXiv:2304.00966

0.0

0.5

-0.5

 $^{-1.0}_{-1.0}$

-0.5

 $\cos \theta_{\ell}$

1.0

0.5

-0.04

Measurements of $\left|V_{cb}\right|$ and hadronic form factors

- Measure rate relative to $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$
- Requires external inputs for $|V_{cb}|$
- Measurement of decay rate as a function of $p_{\perp}(D_s^-)$, proxy for q^2 or recoil w ($D_s^{(*)}$ energy in the B_s^0 rest frame)

$$\frac{dN_{\rm obs}}{dp_{\perp}dm_{corr}} = \mathcal{N}\frac{d\Gamma(|V_{cb}|, h_{A_1}, \dots)}{dp_{\perp}dm_{corr}} \times \epsilon(p_{\perp}, m_{corr})$$

Challenges of SL b-hadron decays