Inclusive $B \to X_u \ell \nu$: Towards NNLO Extractions of V_{ub}

B. Capdevila University of Cambridge, DAMTP & Uni. Autònoma Barcelona, IFAE

In collaboration with: A. Broggio, P. Gambino and A. Ferroglia; arXiv:241x.xxxx $B \to X_u \ell \nu$ Decay Distribution: Optical Theorem

 Decay distribution $(B \to X_u \ell \nu)$

$$\frac{d^3\Gamma}{dq^2 dE_\ell dE_\nu} \sim \sum_{X_u} \sum_{\text{pols.}} \frac{|\langle X_u \ell \nu | \mathcal{H}_{\text{eff}} | B \rangle|^2}{2m_B} \delta^4(p_B - p_{X_u} - q)$$
$$= \frac{G_F^2 |V_{ub}|^2}{8\pi^3} L_{\mu\nu} W^{\mu\nu}$$

Aneesh V. Manohar, Mark B. Wise; hep-ph/9308246

⇒ Inclusive decays: inclusive quantities do not depend on the hadronic final state

 $\Rightarrow L^{\mu\nu}$ leptonic tensor and $W^{\mu\nu}$ hadronic tensor

$$L^{\mu\nu} = 2 \left(p^{\mu}_{\ell} p^{\nu}_{\nu_{\ell}} + p^{\nu}_{\ell} p^{\mu}_{\nu_{\ell}} - g^{\mu\nu} p_{\ell} p_{\nu_{\ell}} + i \epsilon^{\mu\nu\eta\rho} p_{\ell\eta} p_{\nu_{\ell}\rho} \right)$$

 \Rightarrow **Optical Theorem**: $d\Gamma \sim B$ -meson forward scattering amplitude

$$W^{\mu\nu} \sim \operatorname{Im} \int d^4x \, \mathrm{e}^{-iq \cdot x} \left\langle \bar{B} \right| T \left\{ \bar{b}(x) \gamma_{\mu} (1 - \gamma_5) u(x) \bar{u} \gamma^{\nu} (1 - \gamma_5) b \right\} \left| \bar{B} \right\rangle$$

J. Chay, H. Georgi, A. Vainshtein; Phys. Lett. B247 (1992) 399 Aneesh V. Manohar, Mark B. Wise; hep-ph/9308246

$B\to X_u\ell\nu$ Decay Distribution: Form Factors

 \Rightarrow Form factors govern the structure of the decay distribution

$$m_b W^{\mu\nu} = -g^{\mu\nu} W_1 + v^{\mu} v^{\nu} W_2 + i \epsilon^{\mu\nu\rho\sigma} v_{\rho} \hat{q}_{\sigma} W_3 + \hat{q}^{\mu} \hat{q}^{\nu} W_4 + (v^{\mu} \hat{q}^{\nu} + v^{\nu} \hat{q}^{\mu}) W_5$$

J. Chay, H. Georgi, A. Vainshtein; Phys. Lett. B247 (1992) 399 Aneesh V. Manohar, Mark B. Wise; hep-ph/9308246 I. I. Bigi, N. G. Uraltsev; hep-ph/9310285

with
$$v^{\mu} = \frac{p^{\mu}}{m_b}$$
 and $q^{\mu} = p^{\mu}_{\ell} + p^{\mu}_{\nu_{\ell}}$ dilepton momentum

 $\Rightarrow B \rightarrow X_u \ell \nu$ decay distribution in terms of form factors and massless leptons

$$\frac{d^{3}\Gamma}{d\hat{E}_{\ell} d\hat{q}_{0} d\hat{q}^{2}} = \frac{G_{F}^{2} m_{b}^{5} |V_{ub}|^{2}}{16\pi^{3}} \theta(\hat{E}_{\ell}) \theta(\hat{q}^{2}) \theta\left(\hat{q}_{0} - \hat{E}_{\ell} - \frac{\hat{q}^{2}}{4\hat{E}_{\ell}}\right) \\ \times \left\{\hat{q}^{2} W_{1} - \left[2\hat{E}_{\ell}^{2} - 2\hat{E}_{\ell}\hat{q}_{0} + \frac{\hat{q}^{2}}{2}\right] W_{2} + \hat{q}^{2}(2\hat{E}_{\ell} - \hat{q}_{0}) W_{3}\right\}$$

Aneesh V. Manohar, Mark B. Wise; hep-ph/9308246

where "hat quantities" are $\hat{x} = \frac{x}{m_b}$

 $B \to X_u \ell \nu$ Decay Distribution: Heavy Quark Expansion

 \Rightarrow Heavy Quark Expansion (HQE): OPE in $1/m_b$ leading to the expression for W_i

$$W_{i} = W_{i}^{(0)} + W_{i}^{(\pi)} \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + W_{i}^{(G)} \frac{\mu_{G}^{2}}{m_{b}^{2}} + W_{i}^{(D)} \frac{\rho_{D}^{3}}{m_{b}^{3}} + W_{i}^{(LS)} \frac{\rho_{LS}^{3}}{m_{b}^{3}} + \dots$$
$$W_{i}^{(j)} = \sum_{n} \left(\frac{\alpha_{s}}{\pi}\right)^{n} W_{i}^{(j,n)}$$

 $\Rightarrow W_i^{(j)}$ are **perturbatively calculable** coefficients

Theory status of the form factors in GGOU

P. Gambino, P. Giordano, G. Ossola, and N. Uraltsev; arXiv:0707.2493

 $\Rightarrow W_i^{(0)}: b \to uW$ partonic decay up to NNLO BLM corrections $\sim O(\beta_0 \alpha_s^2)$

I. I. Y. Bigi, N. G. Uraltsev and A. I. Vainshtein; hep-ph/9207214 I. I. Y. Bigi, M. A. Shif- man, N. G. Uraltsev and A. I. Vainshtein; hep-ph/9304225 F. de Fazio, M. Neubert; hep-ph/9905351 V. Aquila, P. Gambino, G. Ridolfi, N. Uraltsev; hep-ph/0503083

 $\Rightarrow W_i^{(\pi,G,D,LS)}$: $(b\gamma^{\mu}P_Lu)$ current QCD to HQET matching at LO

B. Blok, L. Koyrakh, M. A. Shifman and A. I. Vainshtein; hep-ph/9307247 Aneesh V. Manohar, Mark B. Wise; hep-ph/9308246

$b \rightarrow c$ Backgrounds: Phase Space Cuts

Belle; arXiv:2102.00020 M. Neubert; hep-ph/9311325

 $B \to X_c \ell \nu$ very CKM favoured w.r.t. $B \to X_u \ell \nu ~(|V_{cb}/V_{ub}| \sim 10)$

- \Rightarrow Large charm backgrounds
- $\Rightarrow B \rightarrow X_u \ell \nu$ signal difficult to measure
- $\Rightarrow\,$ Need to impose kinematic cuts to separate signal from background

$$\frac{m_b}{2} \sim E_\ell^{\rm max} \sim E_\ell > \frac{m_B^2 - m_D^2}{2m_B} \quad {\rm and} \quad 0 \sim m_X^2 < m_D^2$$

Convergence of the local OPE is destroyed within the region allowed by the kinematic cuts

$$\Rightarrow (m_b v + k - q)^2 = (m_b v - q)^2 + O(m_b \Lambda_{\rm QCD}) + O(\Lambda_{\rm QCD}^2) \approx (m_b v - q)^2 \text{ since } (m_b v - q)^2 \sim 0$$

 \Rightarrow Region very sensitive to non-perturbative effects of $O(k) \sim O(\Lambda_{\text{QCD}})$

M. Neubert; hep-ph/9311325 M. Luke; hep-ph/0307378

B. Capdevila

Shape Function(s): $B \to X_s \gamma$

The residual $\sim \Lambda_{\text{QCD}}$ momentum of the *b*-quark in the *B*-meson cannot be encoded into the non-perturbative matrix elements of the OPE. Needs to be resumed into a non-perturbative **Shape Function**

Partonic decay (tree level)

$$\Rightarrow b(p) \rightarrow s(p')\gamma(q)$$
 with $p = m_b v$

 \Rightarrow Infinitely narrow photon line at $E_{\gamma}^{(0)} = \frac{m_b}{2}$

Hadronic level

- $\Rightarrow B(p_B) \rightarrow X_s(p_{X_s})\gamma(q)$
- \Rightarrow Hadronic kinematic boundary at $E_{\gamma}^{\text{max}} = \frac{m_B}{2}$

⇒ Partonic vs hadronic dynamics:

$$E_{\gamma}^{\max} - E_{\gamma}^{(0)} = \frac{m_B - m_b}{2} \sim \frac{\Lambda_{\text{QCD}}}{2}$$

⇒ Partonic dynamics: $b(p) \rightarrow s(p')\gamma(q)$ with $p = m_b v + k$ and $k \sim \Lambda_{\text{QCD}}$

Decay distribution $d\Gamma/dE_{\gamma}$ is smeared due to purely non-perturbative effects

$$\frac{d\Gamma}{dE_{\gamma}} = \int dk_{+} F(k_{+}) \frac{d\Gamma^{\text{pert}}}{dE_{\gamma}} \left(E_{\gamma} - \frac{k_{+}}{2} \right)$$

Bigi, Shifman, Uraltsev, Vainshtein; hep-ph/9312359

Challenges in Semileptonic B Decays 2024

Shape Function(s) in the GGOU Framework

The **GGOU approach** models the **resummation** of **power corrections** as a convolution with non-perturbative **Shape Functions** (SFs)

$$W_i(q_0, q^2) = \int dk_+ F_i(k_+) W_i^{\text{pert}} \left[q_0 - \frac{k_+}{2} \left(1 - \frac{q^2}{m_b M_B} \right), q^2 \right]$$

- $\Rightarrow\,$ The SFs are the parton distribution functions for the b quark in the B meson
- ⇒ In the $m_b \to \infty$ limit, the SFs $F_i(k_+)$ reduce to a single and universal SF (for radiative and semileptonic decays)
- \Rightarrow At finite m_b non-universal subleading SFs emerge
- \Rightarrow SFs modelling becomes an irreducible systematic to $|V_{ub}|$ determinations

P. Gambino, P. Giordano, G. Ossola, and N. Uraltsev; arXiv:0707.2493

SFs in the GGOU Framework

Subleading $O(1/m_b)$ corrections are absorbed into non-universal q^2 -dependent SFs

$$W_i(q_0, q^2) = \int dk_+ F_i(k_+, q^2) W_i^{\text{pert}} \left[q_0 - \frac{k_+}{2} \left(1 - \frac{q^2}{m_b M_B} \right), q^2 \right]$$

SFs can be constrained by matching with the q_0 -moments of the OPE for the structure functions:

$$\int dk_{+}k_{+}^{n}F_{i}(k_{+},q^{2}) = \left(\frac{2}{\Delta}\right)^{n} \left[\delta_{n0} + \frac{J_{i}^{(n,0)}}{I_{i}^{(0,0)}}\right]$$

⇒ Matching consistency implies W_i up to $O(1/m_b^3)$ and W_i^{pert} at tree-level in the convolution formula ⇒ $I_i^{(n,0)}$ and $J_i^{(n,0)}$ the *n*th central q_0 -moments of W_i^{tree} and W_i^{pow} (up to $O(1/m_b^3)$) ⇒ Different parametric families for $F_i(k_+, q^2)$ used to estimate the theoretical errors

Challenges in Semileptonic B Decays 2024

Improvements on the GGOU Approach

Improving constraints and modelling of SFs

 $\Rightarrow \alpha_s/m_b^2$ and α_s/m_b^3 corrections extend theoretical constraints on SF moments:

$$\int dk_{+}k_{+}^{n}F_{i}(k_{+},q^{2}) = \left(\frac{2}{\Delta}\right)^{n} \left[\delta_{n0} + \frac{J_{i}^{(n,0)}}{I_{i}^{(0,0)}} + O(\alpha_{s})\right]$$

B. Capdevila, P. Gambino, S. Nandi: arXiv:2102.03343

 \Rightarrow Switch from parametric families to model-independent Neural Networks (NN) (NNV_{ub} **project**), akin to NNPDF

P. Gambino, K. Healey, C. Mondino: arXiv:1604.0759

Ongoing work: improve NNV_{ub} with new theoretical constraints and 1D experimental data for the NN trainings

Improving theory precision

- \Rightarrow From NNLO BLM to full NNLO to refine perturbative kernels used in observable calculations.
- The improvements will allow for a more precise extraction of V_{ub} by refining the theoretical framework

A. Broggio, B. Capdevila, A. Ferroglia, P. Gambino,: arXiv:241x.xxxx

Open Challenges in Analytic NNLO Calculations

$$W_i^{(2)}(\hat{q}_0, \hat{q}^2) = w_i^{(2,\delta)}(\hat{q}^2) \,\delta(1 + \hat{q}^2 - 2\hat{q}_0) \\ + \sum_{m=0}^3 w_i^{(2,+)}(\hat{q}_0, \hat{q}^2) \left[\frac{\ln^m(1 + \hat{q}^2 - 2\hat{q}_0)}{1 + \hat{q}^2 - 2\hat{q}_0}\right]_+ + \mathcal{R}_i^{(2)}(\hat{q}_0, \hat{q}^2)$$

 $\Rightarrow w_i^{(2,\delta)}$ virtual corrections known NNLO results

R. Bonciani, A. Ferroglia; arXiv:0809.4687

But full analytic results for the complete calculation still require additional work

\Rightarrow Missing topologies in double real radiation corrections

- \Rightarrow Master Integrals (MIs) arising from these topologies include square root terms in the denominator
- \Rightarrow Non trivial to factorise into generalised harmonic polylogarithms

R. Bonciani, A. Broggio, L. Cieri, A. Ferroglia; arXiv:1807.01681

- \Rightarrow One real, one virtual corrections contributions at NNLO remain uncalculated
- \Rightarrow Potential semi-analytic approach: Missing MIs might be calculated using methods like the "expand and match" approach based on AMFlow

M. Fael, F. Lange, K. Schönwald and M. Steinhauser; arXiv:2106.05296 X. Liua, Yan-Qing Ma; arXiv:2201.11669

Numerical Approach to $b \to u W^*$ Calculations

\Rightarrow Numerical approach adopted due to analytic challenges

Repurposed a code for $t \to bW^*$ observables at NNLO and adapted it for $b \to uW^*$

J. Gao, C. S. Li, H. X. Zhu; arXiv:1210.2808

- \Rightarrow Promote m_W from an on-shell value to \hat{q}^2
- \Rightarrow Numerical calculation for $b \rightarrow uW + two$ jets at LO and $b \rightarrow uW + one$ jet at NLO
 - ⇒ The Catani-Seymour method employed to cancel infrared divergences in phase space (PS) integrals
 S. Catani, M. H. Seymour; hep-ph/9605323
- ⇒ Slicing method to regulate the unresolved collinear divergences in the integrals using SCET inputs. Implemented analytic NNLO structures for the $b \rightarrow uW^*$ into the code

$$\frac{d\Gamma^{(2)}}{d\Phi_N}\mathcal{O}(\Phi_N) = \int_0^{\hat{m}_X^{2\text{cut}}} d\hat{m}_X^2 \frac{d\Gamma^{N^3\text{LL}}}{d\Phi_N d\hat{m}_X^2} \bigg|_{\mathcal{O}(\alpha_s^2)} \mathcal{O}(\Phi_N) + \int_{\hat{m}_X^{2\text{cut}}}^{\hat{m}_X^{2\text{max}}} d\hat{m}_X^2 \frac{d\Phi_{N+X}}{d\Phi_N} \frac{d\Gamma^{(1)}_{N+1}}{d\Phi_{N+X}} \mathcal{O}(\Phi_{N+X}) + \int_{\hat{m}_X^{2\text{cut}}}^{\hat{m}_X^{2\text{max}}} d\hat{m}_X^2 \frac{d\Phi_{N+X}}{d\Phi_N} \frac{d\Gamma^{(0)}_{N+X}}{d\Phi_{N+2}} \mathcal{O}(\Phi_{N+X}) + O\left(\frac{1}{m_b}\right)$$

with \mathcal{O} a $b \to uW^*$ obs (total rate, diff. moments, ...), $d\Phi_{N+X}$ is the LO (+ jets) PS and $\hat{m}_X^2 = \frac{(p_u + p_X)^2}{m_b^2}$ is a **slicing parameter** that measures the jet invariant mass (partonic invariant mass)

Challenges in Semileptonic B Decays 2024

Fits to \mathcal{R}_i : Double Differential Distribution

Bypass the analytic calculation of the \mathcal{R}_i functions:

 $\Rightarrow\,$ Calculate numerically suitable $b\rightarrow uW^*$ observables within the Slicing Method

 \Rightarrow Fit a parametrisation for the \mathcal{R}_i

We numerically calculate the double differential distributions

$$\begin{split} & \frac{d\Gamma}{d\hat{m}_X^2 d\hat{q}^2} \sim \sqrt{\hat{q}_0^2 - \hat{q}^2} \left\{ \hat{q}^2 \, W_1 + \frac{1}{3} (\hat{q}_0^2 - \hat{q}^2) W_2 \right\} \\ & \frac{dM_1}{d\hat{m}_X^2 d\hat{q}^2} \sim \sqrt{\hat{q}_0^2 - \hat{q}^2} \left\{ \hat{q}^2 \hat{q}_0 \, W_1 + \frac{1}{3} \hat{q}_0 (\hat{q}_0^2 - \hat{q}^2) W_2 + \frac{1}{3} \hat{q}^2 (\hat{q}_0^2 - \hat{q}^2) W_3 \right\} \\ & \frac{dM_2}{d\hat{m}_X^2 d\hat{q}^2} \sim \sqrt{\hat{q}_0^2 - \hat{q}^2} \left\{ \frac{\hat{q}^2}{2} (4\hat{q}_0^2 - \hat{q}^2) \, W_1 + \frac{6\hat{q}_0^2 - \hat{q}^2}{10} (\hat{q}_0^2 - \hat{q}^2) W_2 + \hat{q}_0 \hat{q}^2 (\hat{q}_0^2 - \hat{q}^2) W_3 \right\} \end{split}$$

 \Rightarrow M_1, M_2 are the first two \hat{E}_{ℓ} moments of the \hat{m}_X^2, \hat{q}^2 distribution

 \Rightarrow These distributions are particularly sensitive to the structure of the form factors, providing key insights for the fitting process

Fits to \mathcal{R}_i : Double Differential Distribution

 \Rightarrow These distributions are calculated in bins of $\hat{m_X}^2$ and fixed \hat{q}^2

$$\left. \left\langle \frac{d^2 M_{n=0,1,2}}{d\hat{m}_X^2 d\hat{q}^2} \right\rangle_{[\hat{m}_X^2]_i, \hat{q}_j^2} = \int_{\hat{m}_{X,i}^2}^{\hat{m}_{X,i+1}^2} d\hat{m}_X^2 \left. \frac{d^2 M_{n=0,1,2}}{d\hat{m}_X^2 d\hat{q}^2} \right|_{\hat{q}^2 = \hat{q}_j^2}$$

with $[\hat{m}_X^2]_i = [\hat{m}_{X,i}^2, \hat{m}_{X,i+1}^2]$, and $\hat{m}_{X,i}^2 < \hat{m}_{X,i+1}^2$

Fits to \mathcal{R}_i : Singular Structures and Parametrising \mathcal{R}_i at NLO and NNLO

Singular structures known exactly at NLO and NNLO from the SCET factorisation formula

$$W^{\mu\nu} = \sum_{i,j=1}^{3} H_{ij}(\bar{n} \cdot p) \operatorname{tr} \left(\bar{\Gamma}_{j}^{\mu} \frac{\not{p}_{-}}{2} \Gamma_{i}^{\nu} \frac{1 + \not{p}}{2} \right) \int d\omega J(p_{\omega}^{2}) S(\omega) + \text{power corrections,}$$

S. W. Bosch, B. O. Lange, M. Neubert, G. Paz; hep-ph/0402094
H. M. Asatrian, C. Greub, B. D. Pecjak; arXiv:0810.0987

 \Rightarrow Hard functions H_{ij} , jet function J, and soft function S are all known at NNLO precision.

 \Rightarrow Incorporate these structures into our model for $W_i^{(j)}$

We parametrise the **remaining regular parts** \mathcal{R}_i using a basis of \hat{m}_X^2 integrable functions

$$\mathcal{R}_{i}^{(j)}(\hat{q}_{0},\hat{q}^{2}) = \sum_{j=1}^{n_{f}} \alpha_{k}^{W_{i}} f_{k}^{W_{i}}(\hat{q}_{0},\hat{q}^{2})$$

 \Rightarrow Schematically our parametrisation for the form factors

$$W_i^{(j)}(\hat{q}_0, \hat{q}^2) = \text{singular parts} + \sum_{j=1}^{n_f} \alpha_k^{W_i} f_k^{W_i}(\hat{q}_0, \hat{q}^2)$$

Challenges in Semileptonic B Decays 2024

T. Becher, M. Neubert; hep-ph/0603140

Preprocessing Integrals for \hat{m}_X^2 and \hat{q}^2 Distributions Fits

A given model for $W_i^{(j)}$ yields the following contribution to the \hat{m}_X^2 , \hat{q}^2 distributions

$$\begin{split} \left\langle \frac{d^2 M_n}{d\hat{m}_X^2 d\hat{q}^2} \right\rangle_{[\hat{m}_X^2]_i, \hat{q}_j^2} &= \frac{G_F^2 m_b^5 |V_{ub}|^2}{16\pi^3} \times \left\{ \text{singular contributions} + \right. \\ &\left. + \sum_{k=1}^{n_f} \left(\alpha_k^{W_1} \left\langle \beta_k^{W_1, n} \right\rangle_{[\hat{m}_X^2]_i, \hat{q}_j^2} + \alpha_k^{W_2} \left\langle \beta_k^{W_2, n} \right\rangle_{[\hat{m}_X^2]_i, \hat{q}_j^2} + \alpha_k^{W_3} \left\langle \beta_k^{W_3, n} \right\rangle_{[\hat{m}_X^2]_i, \hat{q}_j^2} \right) \right\} \end{split}$$

 \Rightarrow In terms of preprocessing integrals $\left<\beta_k^{W_i}\right>_{[\hat{m}_X^2]_k,\hat{q}_j^2}$

$$\left\langle \beta_k^{W_i,n} \right\rangle_{[\hat{m}_X^2]_k, \hat{q}_j^2} = \int_{\hat{q}_0^{\min}}^{\hat{q}_0^{\max}} 2 \, d\hat{q}_0 \int_{\hat{E}_\ell^{\min}}^{\hat{E}_\ell^{\max}} d\hat{E}_\ell \, \hat{E}_\ell^n \left\{ \begin{array}{c} \hat{q}^2 \\ -\left(2\hat{E}_\ell^2 - 2\hat{E}_\ell \hat{q}_0 + \frac{\hat{q}^2}{2}\right) \\ \hat{q}^2(2\hat{E}_\ell - \hat{q}_0) \end{array} \right\} f_k^{W_i}(\hat{q}_0, \hat{q}^2) \Big|_{\hat{q}^2 = \hat{q}_j^2}.$$

 \Rightarrow Fully vectorised implementation of the preprocessing integrals calculation with JAX

Default Fit Configuration: Moments, Bins, and Total Rate

Our default fit configuration includes

- \Rightarrow zeroth, first and second lepton energy moments of the $\hat{m_X}^2$, \hat{q}^2 distribution
- \Rightarrow 200 bins in \hat{m}_X^2 : $\hat{m}_X^2^{\min} = 0$ and $\hat{m}_X^2^{\min} = 1$
- \Rightarrow However, first \hat{m}_X^2 bin is **excluded from the fit**, as it is dominated by singular structures that are already modeled exactly
- $\Rightarrow~26~\hat{q}^2$ points: evenly spaced from $\hat{q}^{2\,\mathrm{min}}=10^{-4}$ to $\hat{q}^{2\,\mathrm{max}}=0.8075$
- \Rightarrow Default NLO fit includes analytic **total rate** $\Gamma_{B \to X_u \ell \nu}$ (with arbitrarily small error)

Statistical Model and Fit Analysis

Construct a χ^2 statistic, incorporating both model and data errors

$$\chi^2(\theta_j) = \sum_{i=1}^{n_{\text{obs}}} \frac{(y_i - \lambda_i(\theta_j))^2}{\sigma_{y_i}^2 + \sigma_{\lambda_i}^2(\theta_j)},$$

- \Rightarrow y_i represents the numerical data
- $\Rightarrow \sigma_{y_i}$ denotes the errors on that data
- $\Rightarrow \lambda_i$ represents our model, with θ_j parameters
- $\Rightarrow \sigma_{\lambda_i}$ model errors from the numerical calculation of preprocessing integrals

Type of fits analysed

- $\Rightarrow~{\bf NLO},$ where we know the analytic structure, to test the framework
- \Rightarrow Then, we moved on to fits at **NNLO**

Model for NLO Fits

```
w = 1 - a2h
uh = 1 + a2h - 2 * a0h
lambdab = 4 * (q0h**2 - q2h)
I1 = jnp.log((1 + uh - q2h + jnp.sqrt(lambdab)) / (1 + uh - q2h - jnp.sqrt(lambdab))) / jnp.sqrt(lambdab))
B func = (inp, log(uh / ((1 - g2h)**2)) + (1 - g2h) * I1) / ((1 - g2h) * uh)
model_vec = jnp.array([
   inp.ones like(uh),
   uh.
   uh**2.
    uh**3.
    w.
    w * uh.
   w * uh**2.
   w * uh**3,
   w**2,
   w**2 * uh.
   w**2 * uh**2,
   w**2 * uh**3.
   inp.log(uh / w**2),
   w * inp.log(uh / w**2).
   inp.log(w) * inp.log(uh),
   jnp.log(w) * jnp.log(uh) * uh,
   inp.sgrt(lambdab) * inp.log(uh).
   uh * w * jnp.log(uh),
   w**2 * inp.log(uh / w**2).
   w**3 * inp.log(uh),
   B func.
   w * B func.
   wkk2 * B func.
   w**3 * B func.
   w**4 * B_func
```

Results from NLO Fits: Form Factor Extraction

 \Rightarrow Results from the NLO fits

 $\Rightarrow W_2 \text{ prefactors in } M_{0,1,2} \text{ are } (\hat{q}_0^2 - \hat{q}^2), \, \hat{q}_0(\hat{q}_0^2 - \hat{q}^2), \, \frac{\hat{6}\hat{q}_0^2 - \hat{q}^2}{10}(\hat{q}_0^2 - \hat{q}^2)$

 \Rightarrow The fit is insensitive to W_2 at $\hat{q}_0^{\min} = \sqrt{\hat{q}^2}$. Does **not affect** the calculation of observables

Results from NLO Fits: Form Factor Extraction

 \Rightarrow Results from the NLO fits

 $\Rightarrow W_2 \text{ prefactors in } M_{0,1,2} \text{ are } (\hat{q}_0^2 - \hat{q}^2), \, \hat{q}_0(\hat{q}_0^2 - \hat{q}^2), \, \frac{\hat{6}\hat{q}_0^2 - \hat{q}^2}{10}(\hat{q}_0^2 - \hat{q}^2)$

 \Rightarrow The fit is insensitive to W_2 at $\hat{q}_0^{\min} = \sqrt{\hat{q}^2}$. Does **not affect** the calculation of observables

NLO \hat{q}^2 Spectrum: Comparison of Fit and Analytic Results

 \Rightarrow Calculation of the \hat{q}^2 spectrum from the fit results (including and excluding the total rate in the fit) and its comparison with the analytic expression

 \Rightarrow diff = analytic - fit. Max diff $\sim 0.5\%$

Model for NNLO Fits

model_vec = jnp.array([inp.ones_like(uh), uh. uh**2. uh**3. uh**4. a2h. q2h \star uh, a2h * uh**2. a2h ∗ uh∗∗3, a2h * uh**4. a2h**2. a2h**2 * uh. g2h**2 * uh**2, g2h**2 * uh**3, q2h**2 * uh**4, a2h**3. a2h**3 * uh. a2h**3 * uh**2. a2h**3 * uh**3. g2h**3 * uh**4, jnp.log(1 - g2h), q2h * jnp.log(1 - q2h), a2h**2 * inp.log(1 - a2h), uh * inp.log(1 - g2h). uh**2 * inp.log(1 - g2h). uh***3 * inp.log(1 - g2h), jnp.log(uh), q2h * jnp.log(uh), g2h**2 * inp.log(uh), inp, log(1 - g2h) * inp, log(uh),inp.log(uh)**2. q2h * inp.log(uh)**2. g2h**2 * inp.log(uh)**2. jnp.log(1 - q2h) * jnp.log(uh)**2, jnp.log(uh)**3, a2h * inp.log(uh)**3. a2h**2 * inp.log(uh)**3. jnp.log(1 - q2h) * jnp.log(uh)**3, 11

Challenges in Semileptonic B Decays 2024

Results from NNLO Fits: Form Factor Extraction

\Rightarrow Results from the NNLO fits

Results from NNLO Fits: Form Factor Extraction

\Rightarrow Results from the NNLO fits

NNLO \hat{q}^2 Spectrum: Comparison of Fit and Analytic Results

⇒ Calculation of the total rate at NNLO from the fit results (excluding the total rate in the fit) and the known analytic result
L. Chen, H. T. Li, J. Wang, Y. Wang; arXiv:2212.06341

$$\Gamma_{B \to X_u \ell \nu}^{(2)} = -21.2955 \text{ (analytic)} \qquad \Gamma_{B \to X_u \ell \nu}^{(2)} = -21.4865 \pm 0.5730 \text{ (fit)}$$

 \Rightarrow We also compare the \hat{q}^2 spectrum at NNLO between the fit and the analytic results

Summary

- ⇒ We have developed a robust numerical approach to extract the $b \rightarrow uW^*$ form factors at NLO and NNLO, overcoming the challenges posed by missing analytic structures
- \Rightarrow Our fits at NLO show excellent agreement with known analytic structures, providing confidence in the reliability of our methods
- \Rightarrow At NNLO, we have successfully extracted form factors and calculated the total rate and \hat{q}^2 spectrum, comparing them with the analytic predictions
- \Rightarrow These results pave the way for further improvements in our models, especially in refining the NNLO fits and including more sophisticated theoretical constraints
- \Rightarrow Future work will focus on extending the NNLO analysis, improving numerical precision

Thank You!

Numerical Tests at NLO: Slicing Method vs Analytic Results

Numerical Tests at NLO: Slicing Method vs Analytic Results

