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Triple differential decay rate

P+ = EX − |P⃗X |

P− = EX + |P⃗X |

Pℓ = MB − 2Eℓ

d3Γ
dP+dP−dPℓ

= G2
F |V 2

ub|
16π3

3∑
i=1

φi (P+, P−, Pℓ)Fi (P+, P−) ,

where all capitalised variables are hadronic, and

φ1 = (MB − P+)(P− − Pℓ)(MB − P− + Pℓ − P+) , for example

phase-space neglecting pion mass

0 ≤ P+ ≤ Pℓ ≤ P− ≤ MB
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What is BLNP?

predicts partial rates for cuts, not differential spectra everywhere.
optimizes the calculation for the peak region,
where P− ∼ mb and P+ ∼ ΛQCD.
organizes the calculation in this power counting, in the HQ Limit

Fi = F (0)
i + 1

(MB − P+)F (1)
i + 1

(MB − P+)2 F (2)
i + . . .

[convenient because of φi , but both could be re-expanded using
MB − P+ = mb − p+. This would then introduce partonic variables.]

factorizes F (j)
i via multi-step matching

QCD (weak eff. Ham.) → SCETI → HQET, e.g.

F (0)
i = Hi (µF )Ji (µF ) ⊗ Ŝ(µF )

evolves the ingredient functions to their “natural scales” µh, µi , µ0.
Resums “large logs” of their ratios.
[maybe not necessary, but certainly not wrong.]
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What is BLNP?

After specifying a cut and phase-space integration,
partial rate is a weighted integral over shape functions, e.g.

Γ(0)
cut = G2

F |Vub|2

16π3

∫ ∆cut

0
dω̂ Ŝ(ω̂)Tcut(ω̂, ∆cut) ,

and requires the non-perturbative shape functions as an input.

We’ll get back to that...
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What is BLNP?

The old work had the following level of accuracy:

[Bosch, BOL, Neubert, Paz, 2004, 2005]

count αs/π ∼ ΛQCD/mb
Leading Power at NLO in RG-improved perturbation theory:

1-loop matching hard- and jet-function
2-loop anomalous dimension
3-loop cusp anomalous dimension

Subleading Power: LO
tree-level: 4 subleading shape functions
plus certain 4-quark operator contributions
leading 1-loop RG-running factor
unfactorized 1-loop “kinematic corrections”

Subsubleading Power: “residual hadronic corrections”
only norms of subsubleading shape functions considered
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What is BLNP?

Moments of the shape functions with a large cutoff ΛUV have been
expanded in a local OPE up to dimension-5 operators.

Input HQ parameters

Λ̄ , µ2
π , µ2

G ,

but partial rates in the shape-function region are also quite
sensitive to higher moments. Thus the need for models.
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Updating efforts

There is a Smörgasbord of progress, this is only a partial list.

Perturbative side
2-loop ingrendients at Leading-Power

hard functions [Bonciani, Ferroglia, 2008; Asatrian, Greub, Pecjak, 2008; Beneke, Huber,

Li, 2009; Bell, 2009]

jet functions [T.Becher, M.Neubert, PLB637, 2006]

partonic shape function [T.Becher, M.Neubert, PLB633, 2006]

3-loop anomalous dimensions [C.Greub, M.Neubert, B.D.Pecjak, EPJC65, 2010,

and references therein]

4-loop cusp anomalous dimension [J.M.Henn, G.P.Korchemsky, B.Mistlberger, JHEP04,

2020]

Even the 3-loop hard function has recently been calculated.
[M.Fael, T.Huber, F.Lange, J.Müeller, K.Schönwald, M.Steinhauser, PRD110, 2024]

1-loop at subleading power [T.Ewerth, P.Gambino, S.Nandi, NPB830, 2010]

Beyond tree-level there are many more independent subleading
shape functions. [R.J.Hill, T.Becher, S.J.Lee, M.Neubert, JHEP 0407, 2004]
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Updating efforts

Heavy-Quark Expansion

[T.Mannel, S.Turczyk, N.Uraltsev, JHEP11, 2010]

[P.Gambino, K.J.Healy, S.Turczyk, PLB763, 2016]

[A.Gunawardana, G.Paz, 1702.08904]

[T.Mannel, K.K.Vos, JHEP06, 2018]

and many more, including present company not listed (apologies!)

A road block, however, is the hadron mass formula

MH = mQ + Λ̄ +
µ2

π − dH
3 µ2

G

2mQ
+ . . . ?
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Updating plan

We decided on the following framework:

use the kinetic scheme: high accuracy
[M.Fael, K. Schönwald, M.Steinhauser, 2020/21]

count α2
s ∼ ΛQCD/mb.

implement NNLO in RG-improved perturbation theory at leading power.
improve the leading-power shape function by including ρ3

D , ρ3
LS in the

modelling.
update the power corrections.
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Expectations

The perturbative error is reduced. [C.Greub, M.Neubert, B.D.Pecjak, EPJC65, 2010]

Quote from their publication on the leading-power predictions of
partial rates:

“[Resummation] is not strictly necessary”
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A few details on modelling
the leading shape function
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Modelling the leading shape function

What we know about the shape function
The anomalous dimension of the light-cone operator is determined by the
renormalization of the “partonic shape function”, Spart(ω, µ0), which is
distribution-valued.
Cutoff-moments of the shape function can be expanded in a local OPE
using the partonic shape function.

⟨Ŝ⟩(ΛUV )
n =

∫ ΛUV

0
ω̂n Ŝ(ω̂, µ0) dω̂ = OPE in 1/ΛUV .

It follows that the “tail” is given by

Ŝ(ω̂ ≫ ΛQCD, µ0) = d
dΛUV

⟨Ŝ⟩(Λuv )
0

∣∣∣
Λuv →ω̂

The bulk, ω̂ ∼ ΛQCD, is non-perturbative.
All HQE parameters in the pole scheme shall be eliminated in favour of
those in a renormalon-free scheme.
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Modelling the leading shape function

Ansätze for modelling

BLNP Ansatz: use the shape-function scheme and glue on the tail where it
goes through zero (if needed at all).

Small cusp where tail starts.
Negligible, exponentially suppressed contribution in tail region.
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Modelling the leading shape function

SIMBA Ansatz: [Z.Ligeti, I.W.Stewart, F.J.Tackmann, PRD78, 2008]

Ŝ(ω̂, µ0) =
ω̂∫

0

Spart(ω̂−k̂, µ0) F̂pol(k̂) dk̂

correct µ0 dependence automatic.
correct moments and tail automatic.
moments of F̂pol exist without
cutoff. Thus exponential tail?

Cutoff-dependent moments of this convolution Ansatz:

⟨Spart ⊗ F̂pol⟩(ΛUV )
n = Λn

UV

∞∑
i=0

K (n)
i

(
ln ΛUV

µ0

)
⟨F̂pol⟩(ΛUV )

i
Λi

UV

matched onto local operators:
for n = 0, 1, 2 it suffices to use 2-point functions. The sum of all
diagrams vanish for the local operators. It follows that ⟨F̂pol⟩(ΛUV )

n reduce
to the tree-level expressions 1, Λ̄, Λ̄2 + µ2

π/3.
for n = 3 the tree-level value is Λ̄3 + Λ̄µ2

π + ρ3
D/3, but radiative

corrections require also matching with 3- and 4-point functions.
This has not been done.
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Modelling the shape function: the “renormalon battle”
SIMBA Ansatz is attractive, but there is trouble:

1 This is not a factorization of long- and short-distance physics!
2 Spart ⊗ F̂pol produces αs(µ0) ln(ω̂/µ0) logs, which become large as

ω̂ → 0. [if you see an αs in the bulk, you put it there.]
3 Need for scheme change inside the bulk.

F̂pol = F̂kin +
∑

j

cj(αs)ĝj = F̂kin + Ĝ(αs)
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Our modelling Ansatz

We propose the following ansatz, which combines both BLNP and SIMBA:

Ŝ(ω̂, µ0) = [Spart(µ0) ⊗ F̂pol](ω̂) + ŜNull(ω̂, µ0)

1 The modelling functions F̂pol and F̂kin are compact.
2 There is an additional function ŜNull that has zero first few moments and

lifts the αs contributions out of the bulk region.

F̂kin(k̂) has support only on [0, k̂c ], with k̂c ∼ few times ΛQCD. This
implies

⟨F̂kin⟩(ΛUV )
n = ⟨F̂kin⟩(k̂c )

n for all ΛUV ≥ k̂c .
Those moments do not grow factorially with n
(as an exponential tail would:

∫
xne−x = n! )

ŜNull allows us to not model the renormalon battle.
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Construction by adding and subtracting
1 The renormalon fight happens in the privacy of its own curly brackets.

We do not model that part explicitely.

Spart ⊗ F̂pol = Spart ⊗ (F̂kin + Ĝ)

= F̂kin +
{

(Spart − δ) ⊗ Fkin + Spart ⊗ G
}

2 Next, we model the low ω̂ region of Ŝtail to our liking (mostly zero). This
makes the contribution inside square brackets compact.

Spart ⊗ F̂pol = F̂kin +
{

Spart ⊗ F̂pol − F̂kin

}
= F̂kin + Ŝtail(µt) +

[
Spart ⊗ F̂pol − F̂kin − Ŝtail(µt)

]
3 We know the moments of the square brackets to 2-loop order. Now we

add and subtract a nonperturbative function Ĥ with exactly those
moments. This lifts αs from the low ω̂ region.

Spart ⊗ F̂pol = F̂kin + Ĥ + Ŝtail(µt) +
[
Spart ⊗ F̂pol − F̂kin − Ŝtail(µt)

]
− Ĥ︸ ︷︷ ︸

−ŜNull
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Examples

Smoother version of “glue on the tail”.

Ŝ = Spart ⊗ F̂pol + ŜNull = F̂kin + Ĥ + Ŝtail
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Shape function uncertainty

Combinatorics
O(10) different functional forms for F̂kin

O(10) different functional forms for Ĥ
So far only 1 transition model for Ŝtail(ω̂ < µt),
but µt can be chosen.

Hundreds of
models

for example: Ĥ(k̂) = 1
k0

w( k̂
k0

)p( k̂
k0

) with w(x) = xα sinh(xc − x)β .

Coefficients of polynomial p adjusted to moment constraints.

SF uncertainty estimates

envelope of scan?
variance of scan?

You can always add a (reasonable) multiple of
some ŜNull and still fulfill all constraints.

What does “reasonable” mean?
Check the next higher unknown moment?

B. O. Lange Updating BLNP 19 / 21



What’s my bias?

Challenges in semileptonic B decays
Ad hoc assumptions: we find that compactness for some
part of Ŝ is better motivated than positive definiteness.
(orthogonal) polynomials have zeros and lead to peaks and
valleys. But inclusive means we don’t resolve resonances.
my bias is: Ŝ should be boring in the bulk. How do I
quantify boringness? What’s my metric?∫ ΛUV

0
dω̂

√
1 + Ŝ ′(ω̂)2 minimal?

Last comment: RG evolution acts as a smoothing filter, makes the shape more
boring (good!). It also mixes the moments. Either you live with a little αs in
the bulk, or you construct ŜNull anew.
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Summary

BLNP mandatory maintenance
reduced perturbative uncertainty at NNLO.
reduced SF uncertainty by including ρ3

D
updating power corrections
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