# Updating the Factorization approach to partial decay rates in inclusive $\bar{B} \rightarrow X_u \ell \bar{\nu}$

## Björn O. Lange (Siegen University)

IN COLLABORATIN WITH Thomas Mannel, Kevin Olschewski, K. Keri Vos

"BLNP" BASED ON "Factorization and Shape-Function Effects in Inclusive B-Meson Decays" S.W.Bosch, B.O.L., M.Neubert, G.Paz, 2004

"Theory of Charmless Inclusive B Decays and the Extraction of  $V_{ub}$ " B.O.L., M.Neubert, G.Paz, 2005





Wien, 26. September 2024

Updating BLNP

# Triple differential decay rate



$$\frac{d^{3}\Gamma}{dP_{+}dP_{-}dP_{\ell}} = \frac{G_{F}^{2}|V_{ub}^{2}|}{16\pi^{3}}\sum_{i=1}^{3}\varphi_{i}(P_{+},P_{-},P_{\ell})\mathcal{F}_{i}(P_{+},P_{-}),$$

where all capitalised variables are hadronic, and

$$arphi_1 = (M_B - P_+)(P_- - P_\ell)(M_B - P_- + P_\ell - P_+)\,,$$
 for example

#### phase-space neglecting pion mass

$$0 \le P_+ \le P_\ell \le P_- \le M_B$$

B. O. Lange

# What is **BLNP**?

- predicts partial rates for cuts, not differential spectra everywhere.
- optimizes the calculation for the peak region, where  $P_{-} \sim m_b$  and  $P_{+} \sim \Lambda_{\rm QCD}$ .
- organizes the calculation in this power counting, in the HQ Limit

$$\mathcal{F}_i = \mathcal{F}_i^{(0)} + rac{1}{(M_B - P_+)} \mathcal{F}_i^{(1)} + rac{1}{(M_B - P_+)^2} \mathcal{F}_i^{(2)} + \dots$$

[convenient because of  $\varphi_i$ , but both could be re-expanded using  $M_B - P_+ = m_b - p_+$ . This would then introduce partonic variables.]

 factorizes *F*<sup>(j)</sup><sub>i</sub> via multi-step matching QCD (weak eff. Ham.) → SCET<sub>1</sub> → HQET, e.g.

$$\mathcal{F}_i^{(0)} = H_i(\mu_F) J_i(\mu_F) \otimes \hat{S}(\mu_F)$$

 evolves the ingredient functions to their "natural scales" μ<sub>h</sub>, μ<sub>i</sub>, μ<sub>0</sub>. Resums "large logs" of their ratios. [maybe not necessary, but certainly not wrong.] After specifying a cut and phase-space integration, partial rate is a weighted integral over shape functions, e.g.

$$\Gamma_{\rm cut}^{(0)} = \frac{G_F^2 |V_{ub}|^2}{16\pi^3} \int_0^{\Delta_{\rm cut}} d\hat{\omega} \ \hat{S}(\hat{\omega}) T_{\rm cut}(\hat{\omega}, \Delta_{\rm cut}) \ ,$$

and requires the non-perturbative shape functions as an input.

We'll get back to that...

The old work had the following level of accuracy:

[Bosch, BOL, Neubert, Paz, 2004, 2005]

- count  $\alpha_s/\pi \sim \Lambda_{
  m QCD}/m_b$
- Leading Power at NLO in RG-improved perturbation theory:
  - 1-loop matching hard- and jet-function
  - 2-loop anomalous dimension
  - 3-loop cusp anomalous dimension
- Subleading Power: LO
  - tree-level: 4 subleading shape functions
  - plus certain 4-quark operator contributions
  - leading 1-loop RG-running factor
  - unfactorized 1-loop "kinematic corrections"
- Subsubleading Power: "residual hadronic corrections"
  - only norms of subsubleading shape functions considered

Moments of the shape functions with a large cutoff  $\Lambda_{UV}$  have been expanded in a local OPE up to dimension-5 operators.

| Input HQ parameters |   |   |               |   |               |   |  |
|---------------------|---|---|---------------|---|---------------|---|--|
|                     | Ā | , | $\mu_{\pi}^2$ | , | $\mu_{G}^{2}$ | , |  |

but partial rates in the shape-function region are also quite sensitive to higher moments. Thus the need for models.

#### There is a Smörgasbord of progress, this is only a partial list.

### Perturbative side

- 2-loop ingrendients at Leading-Power
  - hard functions [Bonciani, Ferroglia, 2008; Asatrian, Greub, Pecjak, 2008; Beneke, Huber, Li, 2009; Bell, 2009]
  - jet functions [T.Becher, M.Neubert, PLB637, 2006]
  - partonic shape function [T.Becher, M.Neubert, PLB633, 2006]
- 3-loop anomalous dimensions [C.Greub, M.Neubert, B.D.Pecjak, EPJC65, 2010, and references therein]
- 4-loop cusp anomalous dimension [J.M.Henn, G.P.Korchemsky, B.Mistlberger, JHEP04, 2020]
- Even the 3-loop hard function has recently been calculated. [M.Fael, T.Huber, F.Lange, J.Müeller, K.Schönwald, M.Steinhauser, PRD110, 2024]
- 1-loop at subleading power [T.Ewerth, P.Gambino, S.Nandi, NPB830, 2010]
   Beyond tree-level there are many more independent subleading shape functions. [R.J.Hill, T.Becher, S.J.Lee, M.Neubert, JHEP 0407, 2004]

# Updating efforts

### Heavy-Quark Expansion

- [T.Mannel, S.Turczyk, N.Uraltsev, JHEP11, 2010]
- [P.Gambino, K.J.Healy, S.Turczyk, PLB763, 2016]
- [A.Gunawardana, G.Paz, 1702.08904]
- [T.Mannel, K.K.Vos, JHEP06, 2018]

and many more, including present company not listed (apologies!)

A road block, however, is the hadron mass formula

$$M_H = m_Q + \bar{\Lambda} + rac{\mu_\pi^2 - rac{d_H}{3}\mu_G^2}{2m_Q} + \dots$$
 ?

## We decided on the following framework:

- use the kinetic scheme: high accuracy [M.Fael, K. Schönwald, M.Steinhauser, 2020/21]
- count  $\alpha_s^2 \sim \Lambda_{\rm QCD}/m_b$ .
- implement NNLO in RG-improved perturbation theory at leading power.
- improve the leading-power shape function by including  $\rho_D^3$ ,  $\rho_{\rm LS}^3$  in the modelling.
- update the power corrections.

The perturbative error is reduced. [C.Greub, M.Neubert, B.D.Pecjak, EPJC65, 2010] Quote from their publication on the **leading-power** predictions of partial rates:

•  $P_+ < 0.66$  GeV:

|      | $\Gamma_u^{(0)}$ | $\mu_h$            | $\mu_i$            |
|------|------------------|--------------------|--------------------|
| NLO  | 60.37            | $^{+3.52}_{-3.37}$ | $^{+3.81}_{-6.67}$ |
| NNLO | 52.92            | $^{+1.46}_{-1.72}$ | $^{+0.09}_{-2.79}$ |

•  $P_+ < 0.66$  GeV:

| Fixed-Order | $\Gamma_u^{(0)}$ | $\mu$              |
|-------------|------------------|--------------------|
| NLO         | 49.11            | $^{+5.43}_{-9.41}$ |
| NNLO        | 49.53            | $^{+0.13}_{-4.01}$ |

•  $M_X < 1.7$  GeV:

|      | $\Gamma_u^{(0)}$ | $\mu_h$            | $\mu_i$            |
|------|------------------|--------------------|--------------------|
| NLO  | 61.86            | $+3.23 \\ -3.21$   | $^{+1.89}_{-5.50}$ |
| NNLO | 52.26            | $^{+1.05}_{-1.40}$ | $^{+0.65}_{-3.90}$ |

•  $M_X < 1.7$  GeV:

| Fixed-Order | $\Gamma_u^{(0)}$ | $\mu$              |
|-------------|------------------|--------------------|
| NLO         | 51.81            | $^{+3.69}_{-8.62}$ |
| NNLO        | 50.47            | $^{+0.01}_{-2.62}$ |

•  $E_l > 2.0$  GeV:

|      | $\Gamma_u^{(0)}$ | $\mu_h$            | $\mu_i$            |
|------|------------------|--------------------|--------------------|
| NLO  | 25.98            | $^{+1.63}_{-1.61}$ | $^{+1.69}_{-2.81}$ |
| NNLO | 22.61            | $^{+0.63}_{-0.78}$ | $^{+0.01}_{-0.94}$ |

•  $E_l > 2.0$  GeV:

| Fixed-Order | $\Gamma_u^{(0)}$ | μ                  |
|-------------|------------------|--------------------|
| NLO         | 21.01            | $^{+2.04}_{-3.54}$ |
| NNLO        | 20.99            | $^{+0.04}_{-1.43}$ |

"[Resummation] is not strictly necessary"

A few details on modelling the leading shape function

# Modelling the leading shape function

#### What we know about the shape function

- The anomalous dimension of the light-cone operator is determined by the renormalization of the "partonic shape function",  $S_{part}(\omega, \mu_0)$ , which is distribution-valued.
- Cutoff-moments of the shape function can be expanded in a local OPE using the partonic shape function.

$$\langle \hat{S} \rangle_n^{(\Lambda_{UV})} = \int_0^{\Lambda_{UV}} \hat{\omega}^n \, \hat{S}(\hat{\omega}, \mu_0) \, d\hat{\omega} = \mathsf{OPE} \, \mathsf{in} \, 1/\Lambda_{UV}.$$

It follows that the "tail" is given by

$$\hat{S}(\hat{\omega} \gg \Lambda_{
m QCD}, \mu_0) = rac{d}{d\Lambda_{UV}} \langle \hat{S} 
angle_0^{(\Lambda_{uv})} \Big|_{\Lambda_{uv} o \hat{\omega}}$$

- The bulk,  $\hat{\omega} \sim \Lambda_{\rm QCD}$ , is non-perturbative.
- All HQE parameters in the pole scheme shall be eliminated in favour of those in a renormalon-free scheme.

#### Ansätze for modelling

BLNP Ansatz: use the shape-function scheme and glue on the tail where it goes through zero (if needed at all).



Small cusp where tail starts.

Negligible, exponentially suppressed contribution in tail region.

# Modelling the leading shape function

SIMBA Ansatz: [Z.Ligeti, I.W.Stewart, F.J.Tackmann, PRD78, 2008]

$$\hat{S}(\hat{\omega},\mu_0) = \int_{0}^{\hat{\omega}} S_{\text{part}}(\hat{\omega}-\hat{k},\mu_0) \hat{F}_{\text{pol}}(\hat{k}) d\hat{k} \stackrel{\bullet}{=} \text{correct } \mu_0 \text{ dependence automatic.} \\ \bullet \text{ correct moments and tail automatic.} \\ \bullet \text{ moments of } \hat{F}_{\text{pol}} \text{ exist without cutoff. Thus exponential tail?}$$

Cutoff-dependent moments of this convolution Ansatz:

$$\langle S_{\rm part} \otimes \hat{F}_{\rm pol} \rangle_n^{(\Lambda_{UV})} = \Lambda_{UV}^n \sum_{i=0}^\infty K_i^{(n)} \left( \ln \frac{\Lambda_{UV}}{\mu_0} \right) \frac{\langle \hat{F}_{\rm pol} \rangle_i^{(\Lambda_{UV})}}{\Lambda_{UV}^i}$$

matched onto local operators:

- for n = 0, 1, 2 it suffices to use 2-point functions. The sum of all diagrams vanish for the local operators. It follows that  $\langle \hat{F}_{\text{pol}} \rangle_n^{(\Lambda_{UV})}$  reduce to the tree-level expressions 1,  $\bar{\Lambda}$ ,  $\bar{\Lambda}^2 + \mu_{\pi}^2/3$ .
- for n = 3 the tree-level value is  $\bar{\Lambda}^3 + \bar{\Lambda}\mu_{\pi}^2 + \rho_D^3/3$ , but radiative corrections require also matching with 3- and 4-point functions. This has not been done.

# Modelling the shape function: the "renormalon battle"

SIMBA Ansatz is attractive, but there is trouble:

- This is not a factorization of long- and short-distance physics!
- **2**  $S_{\text{part}} \otimes \hat{F}_{\text{pol}}$  produces  $\alpha_s(\mu_0) \ln(\hat{\omega}/\mu_0)$  logs, which become large as  $\hat{\omega} \to 0$ . [if you see an  $\alpha_s$  in the bulk, **you** put it there.]

In the second second



they need to battle it out. 1-loop "radiative corrections":



We propose the following ansatz, which combines both BLNP and SIMBA:

## $\hat{S}(\hat{\omega},\mu_0) = [S_{ ext{part}}(\mu_0)\otimes\hat{F}_{ ext{pol}}](\hat{\omega}) + \hat{S}_{ ext{Null}}(\hat{\omega},\mu_0)$

- **1** The modelling functions  $\hat{F}_{pol}$  and  $\hat{F}_{kin}$  are **compact**.
- 2 There is an additional function  $\hat{S}_{Null}$  that has zero first few moments and lifts the  $\alpha_s$  contributions out of the bulk region.
- - $\langle \hat{F}_{\mathrm{kin}} \rangle_n^{(\Lambda_{UV})} = \langle \hat{F}_{\mathrm{kin}} \rangle_n^{(\hat{k}_c)}$  for all  $\Lambda_{UV} \ge \hat{k}_c$ .
  - Those moments do **not** grow factorially with *n* (as an exponential tail would:  $\int x^n e^{-x} = n!$ )

•  $\hat{S}_{\mathrm{Null}}$  allows us to **not** model the renormalon battle.

# Construction by adding and subtracting

The renormalon fight happens in the privacy of its own curly brackets. We do not model that part explicitely.

$$egin{array}{rcl} S_{ ext{part}}\otimes \hat{F}_{ ext{pol}}&=&S_{ ext{part}}\otimes (\hat{F}_{ ext{kin}}+\hat{G})\ &=&\hat{F}_{ ext{kin}}+\left\{ (S_{ ext{part}}-\delta)\otimes F_{ ext{kin}}+S_{ ext{part}}\otimes G
ight\}$$

**2** Next, we model the low  $\hat{\omega}$  region of  $\hat{S}_{tail}$  to our liking (mostly zero). This makes the contribution inside square brackets compact.

$$egin{array}{rcl} S_{ ext{part}}\otimes \hat{F}_{ ext{pol}}&=&\hat{F}_{ ext{kin}}+\left\{S_{ ext{part}}\otimes \hat{F}_{ ext{pol}}-\hat{F}_{ ext{kin}}
ight\}\ &=&\hat{F}_{ ext{kin}}+\hat{S}_{ ext{tail}}(\mu_t)+\left[S_{ ext{part}}\otimes \hat{F}_{ ext{pol}}-\hat{F}_{ ext{kin}}-\hat{S}_{ ext{tail}}(\mu_t)
ight] \end{array}$$

We know the moments of the square brackets to 2-loop order. Now we add and subtract a nonperturbative function Ĥ with exactly those moments. This lifts α<sub>s</sub> from the low ŵ region.

$$egin{array}{rcl} S_{ ext{part}}\otimes \hat{F}_{ ext{pol}}&=&\hat{F}_{ ext{kin}}+\hat{H}+\hat{S}_{ ext{tail}}(\mu_t)+\underbrace{\left[S_{ ext{part}}\otimes \hat{F}_{ ext{pol}}-\hat{F}_{ ext{kin}}-\hat{S}_{ ext{tail}}(\mu_t)
ight]-\hat{H}}_{-\hat{S}_{ ext{Null}}} \end{array}$$

# Examples

Smoother version of "glue on the tail".



## <u>Combinatorics</u>

- $\mathcal{O}(10)$  different functional forms for  $\hat{\mathcal{F}}_{\mathrm{kin}}$
- $\mathcal{O}(10)$  different functional forms for  $\hat{H}$
- So far only 1 transition model for Ŝ<sub>tail</sub>(ŵ < μ<sub>t</sub>), but μ<sub>t</sub> can be chosen.

Hundreds of models

for example:  $\hat{H}(\hat{k}) = \frac{1}{k_0} w(\frac{\hat{k}}{k_0}) p(\frac{\hat{k}}{k_0})$  with  $w(x) = x^{\alpha} \sinh(x_c - x)^{\beta}$ .

Coefficients of polynomial *p* adjusted to moment constraints.

## SF uncertainty estimates

- envelope of scan?
  - variance of scan?

You can always add a (reasonable) multiple of some  $\hat{S}_{\rm Null}$  and still fulfill all constraints.

What does "reasonable" mean? Check the next higher unknown moment?

## Challenges in semileptonic B decays

- Ad hoc assumptions: we find that compactness for some part of  $\hat{S}$  is better motivated than **positive definiteness**.
- (orthogonal) polynomials have zeros and lead to peaks and valleys. But inclusive means we don't resolve resonances.
- my bias is: Ŝ should be boring in the bulk. How do I quantify boringness? What's my metric?

$$\int_0^{\Lambda_{UV}} d\hat{\omega} \sqrt{1 + \hat{S}'(\hat{\omega})^2} \qquad \text{minimal?}$$

Last comment: RG evolution acts as a smoothing filter, makes the shape more boring (good!). It also mixes the moments. Either you live with a little  $\alpha_s$  in the bulk, or you construct  $\hat{S}_{Null}$  anew.

## BLNP mandatory maintenance

- reduced perturbative uncertainty at NNLO.
- reduced SF uncertainty by including  $\rho_D^3$
- updating power corrections