Heavy to heavy semileptonic decays in LQCD: current status

Alejandro Vaquero

 $23^{\rm rd}$ September 2024

Motivation: Tensions in $|V_{cb}|$ inclusive vs exclusive

The CKM matrix

• Current values (PDG 2024):

$$|V_{cb}|_{\rm excl} \times 10^{-3} = 39.8(6)$$

$$|V_{cb}|_{\rm incl} \times 10^{-3} = 42.2(5)$$

• The 3σ difference between these two values shows that we have not improved much

Motivation: Tensions in LFU ratios

• Current $\approx 2.8\sigma$ combined tension with the SM (HFLAV)

• Tension in $R(D) \approx 1.5\sigma$ Tension in $R(D^*) \approx 2.8\sigma$

• • • • • • • •

Semileptonic B decays on the lattice: Exclusive $|V_{cb}|$

Semileptonic B decays on the lattice: Universality ratios

- The universality ratio depends only on the form factors
- It is possible to extract $R(D_{(s)}^{(*)})$ without experimental data!

- For heavy quarks $(m_Q > \Lambda_{QCD})$, discretization errors grow as $\sim \alpha_s^k (am_Q)^n$
- Mainly two ways to address this problem
 - Effective actions (FermiLab, NRQCD...)
 - Treat the bottom as a light quark
 - ${\ensuremath{\, \bullet }}$ Use unphysical values for m_b and extrapolate

Different quark actions have different discretization errors when applied to heavy quarks

Semileptonic B decays on the lattice: Heavy quarks

• Domain-Wall fermions from JLQCD

PoS LATTICE2016 (2016) 118

- Errors start at $O(a^2 m_Q^2)$
- Data beyond $am_Q\approx 0.65$ features large discretization systematics
- Large correction in the extrapolation

 $a \approx 0.044 - 0.080$ fm, $M_{\pi} \approx 230 - 500$ MeV, $am_Q \lesssim 0.86$, $m_Q \lesssim 3.0$ GeV

Semileptonic B decays on the lattice: Heavy quarks

- HISQ fermions from Fermilab/MILC
- From HPQCD

Phys.Rev.D 98 (2018) 7, 074512; Phys.Rev.D 107 (2023) 9, 094516

Phys.Rev.D 75 (2007) 054502; Phys.Rev.D 87 (2013) 3, 034017

- Errors start at $O(\alpha_s v a^2 m_Q^2)$, one order of magnitude smaller than $O(a^2 m_Q^2)$
- Reasonable correction, even at large am_Q , without ap issues
- HISQ corrects at all orders, theoretical limit with fine tuning $am_Q = \pi/2$

Some statistical errors are missing

8/31

- Latest calculations and tensions (mainly $B \to D^* \ell \nu$)
- Calculations in progress
 - HPQCD $B_c \rightarrow J/\psi \ell \nu$
 - RBQCD/UKQCD $B_s \rightarrow D_s^* \ell \nu$
 - Fermilab/MILC $B_{(s)} \rightarrow D^*_{(s)} \ell \nu$
 - JLQCD $B \to D\ell\nu$
- $\bullet \ \ {\rm Not \ covered} \ \ \rightarrow \ \ {\rm Inclusive \ determinations \ from \ LQCD}$

< □ > < 同 >

$B \to D^* \ell \nu$

2

A B > 4
B > 4
B

Fermilab/MILCASQTAD + Fermilab

JLQCD • DW + DW HPQCD HISQ + HISQ

< <>>>

Review of lattice results: $B \rightarrow D^* \ell \nu$

Review of lattice results: D'Agostini bias

• V_{cb} value well below the latest inclusive one (everything $\times 10^3$) $|V_{cb}|_{excl}^{FM} = 38.40(78) < |V_{cb}|_{incl}^{BCG} = 42.16(51)$

Eur.Phys.J.C82 (2022), 1141; Phys.Lett.B822 (2021), 136679; JHEP10(2022)068

• Could this be a consequence of D'Agostini effect?

Nucl.Instrum.Meth.A346 (1994), 306

Review of lattice results: Comparison of HQET form factors

14/31

Review of lattice results: Comparison of HQET form factors

23rd September 2024

Review of lattice results: Comparison of decay amplitudes

16/31

Review of lattice results: Combined fits

- Combined fits with priors 0(1)
- Kinematic constraint imposed with priors
- BGL fit 2222

	w Constraint		w/o Constraint	
	p	$R_2(1)$	p	$R_2(1)$
MILC	0.51	1.20(12)	0.43	1.27(13)
JLQCD	0.52	0.98(19)	0.25	0.97(19)
HPQCD	0.77	1.39(16)	0.65	1.39(16)
MILC+JLQCD	0.40	1.118(97)	0.36	1.16(11)
MILC+HPQCD	0.44	1.262(93)	0.37	1.262(93)
JLQCD+HPQCD	0.73	1.18(12)	0.67	1.18(12)
All	0.56	1.193(83)	0.50	1.193(83)

 $\bullet~p\mbox{-value}$ of Belle untagged + BaBar BGL fit 223 is ≈ 0.04

• Combined $R(D^*) = 0.2667(57)$

Review of lattice results: Combined fits

4	Vac	liaro
<i>n</i> .	vay	lucio

Review of lattice results: Combined fits

$B_s \to D_s^* \ell \nu$

Ξ.

Review of lattice results: $B_s \to D_s^* \ell \nu$

▶ ∢ ⊒

< □ > < 同 >

Review of lattice projects

$B_c \to J/\psi \ell \nu$

Ξ.

▶ < ∃ >

• • • • • • • •

Review of lattice projects: $B_c \rightarrow J \psi \ell \nu$

- HPQCD with similar setup to $B_{(s)} \rightarrow D^*_{(s)} \ell \nu$
- Update of the 2020 calculation Phys.Rev.D102 (2020), 094518
- Plan to include an extra 0.03 fm ensemble
- Chiral-continuum extrapolation includes a *z* expansion
- Susceptibilities computed using LQCD Phys.Rev.D104 (2021), 094512; Phys.Rev.D110 (2024), 054506
 - Large reduction in errors
 - Large shifts wrt the previous calculation (!!) (Preliminary)

 $R(J/\psi) = 0.2582(38) \rightarrow 0.2674(31)$

 $F_L = 0.4416(92) \rightarrow 0.4510(88)$

A. Vaquero

Review of lattice projects

$B_s \to D_s^* \ell \nu$

Ξ.

▶ ∢ ∃ ▶

• • • • • • • •

- Different group RBC/UKQCD
- Using 6 $N_f = 2 + 1$ ensembles of sea DW quarks
- The bottom quark use an effective action
 - Good crosscheck against JLQCD
 - $\bullet\,$ Potentially large systematics due to a mismath between b and c actions $_{\rm Phys. Rev. D87 (2018), \ 054502}$
- m_{π} in the range 270 433 MeV

Review of lattice projects

$B_{(s)} \to D_{(s)}^{(*)} \ell \nu$

Ξ.

イロト イヨト イヨト イヨト

- Fermilab/MILC calculation
- Using 7 $N_f = 2 + 1 + 1$ ensembles of sea HISQ quarks
- The heavy quarks use the Fermilab effective action
 - Correlated with a $B \rightarrow L\ell\nu$ analysis using the same data
 - Four channels in a single correlated analysis

• • • • • • • •

- Fermilab/MILC calculation
- Planning to use 9 $N_f = 2 + 1 + 1$ ensembles of sea HISQ quarks
- The heavy quarks use the HISQ action
 - Physical bottom mass reachable with the finest ensembles
- m_{π} physical in several ensembles

Preliminary results $B_s \rightarrow D_s^* \ell \nu$, statistics 24×426 Single ensemble a = 0.06 fm and $m_l/m_s = \frac{1}{5}$ at different values of am_b

Thank you for your time

2

メロト メタト メヨト メヨト