BGL Order Truncation and Model Selection in |Vcb| Extraction

Eric Persson Florian Bernlochner Zoltan Ligeti Markus Prim Dean J. Robinson

The Vcb Puzzle

typically yielding higher values.

channel due to its experimental accessibility and theoretical cleanliness.

• Discrepancy in $|V_{ch}|$ determinations: There is a long-standing tension between inclusive and exclusive measurements of the CKM matrix element $|V_{cb}|$, with inclusive methods

• Focus on $B \rightarrow D^* l \nu$ channel: Recent studies have concentrated on this exclusive decay

BGL Parametrization and Vcb

Boyd-Grinstein-Lebed (BGL) form factor parametrization: Expresses the form factors as a power series in a parameter z, incorporating unitarity constraints.

$$\begin{split} \langle D^*(\varepsilon, p') | \bar{c} \gamma^{\mu} b | \bar{B}(p) \rangle &= i g \epsilon^{\mu \nu \alpha \beta} \varepsilon_{\nu}^* p_{\alpha} p'_{\beta}, \\ \langle D^*(\varepsilon, p') | \bar{c} \gamma^{\mu} \gamma^5 b | \bar{B}(p) \rangle &= f \varepsilon^{*\mu} + (\varepsilon^* \cdot p) [a_+ (p + p')^{\mu} + a_- (p - p')^{\mu}], \end{split}$$

$$g(z) = rac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^N a_n z^n, \qquad f(z) = rac{1}{P_f(z)}$$

Conformal variable z:

$$z = \frac{\sqrt{w+1} - \sqrt{2}a}{\sqrt{w+1} + \sqrt{2}a}$$
QCD enco

The Truncation Dilemma

- Truncation order dilemma: The choice of where to truncate the BGL expansion can impact the extracted $|V_{cb}|$ value:
 - Truncate too soon: Model dependence in extracted result for $|V_{ch}|$?
 - Truncate too late: Unnecessarily increase variance on $|V_{ch}|$?

Classic bias-variance trade-off. Necessary to develop principled, rigorous procedure for model selection in the context of BGL parametrization.

Introduction to Model Selection

- based on data, balancing complexity and fit (principle of parsimony).
- different model to be evaluated.
- general statistical literature.

• Model selection: the task of choosing the best model from a set of candidate models

• In the BGL context: each possible truncation order of the BGL expansion represents a

• Connection to statistical literature: Conceptualizing the choice of BGL order as a model selection problem lets us connect this specific issue in HEP to a much broader and more

Components of Model Selection

- - SSE (Sum of Squared Errors) a.k.a. "Chi-squared"
 - AIC (Akaike Information Criterion)
 - BIC (Bayesian Information Criterion)

model only if it improves the evaluation metric by at least some value".

δ_{μ} : (BGLOrder, BGLOrder) \rightarrow BGLOrder

- such as forward selection, backward elimination, or exhaustive search.
 - $f_{\delta,\mu}:\Omega_{BC}$

• Model evaluation metrics: These are quantitative measures to assess model performance, such as:

$\mu: BGLOrder \to \mathbb{R}$

• Model selection decision rules: The criteria used to choose between models based on their evaluation metrics, e.g., "select the model with the lowest model evaluation metric" or "select the more complex

• Model space search algorithms: These are the procedures used to explore the space of possible models,

$$_{GL} \rightarrow BGLOrder$$

Different approaches on the market

	Evaluation Metric	Selection Rule	Search Algorithm
Bernlocher et al. (2019)	χ2	Choose nested model if Δχ2 > 1	Forward stepwise selection
Gambino, Jung, Schacht	χ2 + unitarity penalty	Higher complexity until stable	Forward selection
Current paper	AIC	Lowest metric (w/ and w/o UT)	Exhaustive search

Akaike Information Criterion

$AIC = 2k - 2log(\hat{L})$

where k is the number of parameters and \hat{L} the maximized value of the likelihood function for the model. It aims to find the model that minimizes information loss.

Advantages:

- Theoretically well-motivated
- Easy to implement
- Ubiquitous in other fields (e.g. time series analysis)
- Allows for straightforward comparison of non-nested models

Toy Study Design

- the Nested Hypothesis Test (NHT) approach of Bernlochner et al. (2019).
- with covariance matrix from HFLAV that reflects current world average precision.
- using standard least squares fit.
- procedure produces unbiased estimates of $|V_{ch}|$ with correct coverage properties.

• **Purpose:** To demonstrate the effectiveness of AIC in choosing BGL order. Compare result to

• Data generation: Simulate $B \rightarrow D^* l \nu$ decay data assuming true underlying order of (3,3,3),

• Model fitting: Fit all permutations of BGL orders from (1, 1, 1) to (3, 3, 3) to the simulated data

• Comparison: Apply AIC and NHT procedures to select the optimal BGL order. Show that our

V_{cb} pulls

Our D* averaged spectrum

10

NHT (without unitarity constraints)

AIC (without unitarity constraints)

NHT (with unitarity constraints)

13

Beyond Single Model Selection

- uncertainty and can lead to overconfident inferences. Unnecessarily dichotomous.
- contributions based on their relative support from the data.
- Accounting for model uncertainty: By considering multiple models, we can more accurately reflect our uncertainty about the true underlying process.

Limitations of single model selection: Choosing a single "best" model ignores model

• Model averaging approaches: These methods consider multiple models, weighing their

Global AIC (gAIC)

An approach that weighs multiple models based on their AIC scores, rather than selecting a single best model:

$$w_i = \exp(-\frac{1}{2}\Delta_i) / \sum_j \exp(-\frac{1}{2}\Delta_j) \qquad \Delta_i = \mathsf{AIC}_i - \mathsf{AIC}_{\min} \qquad |V_{cb}| = \sum_i w_i |V_{cb}|_i$$

where ΔAIC is the difference between a model's AIC and the minimum AIC in the set.

- Advantages: gAIC provides a more nuanced view of model performance, captures model selection uncertainty, and can lead to more robust predictions and parameter estimates.
- model selection.

• Model uncertainty: Accounts for the fact that multiple models may be plausible given the data.

Comprehensive view: Offers a more nuanced understanding of the model space than single

Without unitarity constraints

With unitarity constraints

Outlook

- **Finalize current studies:** Complete ongoing analyses and perform robustness checks.
- Alternative metrics: Explore other model evaluation criteria like adjusted R^2 or Mallows's C_p to show that AIC also outperforms these.
- **Incorporate external constraints:** Investigate the impact of including lattice QCD constraints in the model selection process.

Imposing unitarity

• I.e. for each BGL coefficient we check if unitarity is violated, e.g. via

 $\sum a_i^2 / |V_{cb}|^2 \le 1$ $\sum_{i} \frac{b_i^2}{|V_{cb}|^2} + \sum_{i} \frac{c_i^2}{|V_{cb}|^2} \le 1$

The double Fermi Dirac function (DFD) provides an approximate top-hat function and penalizes the χ^2 only if a boundary is hit. We use w = 50 for the transition.

To impose unitarity, we include a penalty into the function of the form $\chi^2 \rightarrow \chi^2 - 2 \sum \log DFD$ $a_i, \{b_i, c_i\}$

