Eric Persson Florian Bernlochner Zoltan Ligeti Markus Prim Dean J. Robinson

BGL Order Truncation and Model Selection in |Vcb| Extraction

The |Vcb| Puzzle

and exclusive measurements of the CKM matrix element $\mid V_{cb} \mid$, with inclusive methods typically yielding higher values.

channel due to its experimental accessibility and theoretical cleanliness.

• Discrepancy in $|V_{cb}|$ determinations: There is a long-standing tension between inclusive

• **Focus on** $B \to D^*l\nu$ **channel:** Recent studies have concentrated on this exclusive decay

BGL Parametrization and $|V_{cb}|$

• **Boyd-Grinstein-Lebed (BGL) form factor parametrization:** Expresses the form factors as a power series in a parameter z, incorporating unitarity constraints.

$$
\langle D^*(\varepsilon, p')|\bar{c}\gamma^{\mu}b|\bar{B}(p)\rangle = ig\varepsilon^{\mu\nu\alpha\beta}\varepsilon_{\nu}^*p_{\alpha}p'_{\beta},
$$

$$
\langle D^*(\varepsilon, p')|\bar{c}\gamma^{\mu}\gamma^5b|\bar{B}(p)\rangle = f\varepsilon^{*\mu} + (\varepsilon^* \cdot p)[a_{+}(p+p')^{\mu} + a_{-}(p-p')^{\mu}],
$$

$$
g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^N a_n z^n, \qquad f(z) = \frac{1}{P_f(z)}
$$

Conformal variable z:
\n
$$
z = \frac{\sqrt{w+1} - \sqrt{2}a}{\sqrt{w+1} + \sqrt{2}a}
$$
\n**QCD encc**

The Truncation Dilemma

- **Truncation order dilemma:** The choice of where to truncate the BGL expansion can impact the extracted $|V_{cb}|$ value:
	- \cdot **Truncate too soon:** Model dependence in extracted result for $|V_{cb}|$?
	- **Truncate too late:** Unnecessarily increase variance on $|V_{cb}|$?

Classic bias-variance trade-off. Necessary to develop principled, rigorous procedure for model selection in the context of BGL parametrization.

Introduction to Model Selection

• **Model selection:** the task of choosing the best model from a set of candidate models

• **In the BGL context:** each possible truncation order of the BGL expansion represents a

- based on data, balancing complexity and fit (principle of parsimony).
- different model to be evaluated.
- general statistical literature.

• **Connection to statistical literature:** Conceptualizing the choice of BGL order as a model selection problem lets us connect this specific issue in HEP to a much broader and more

Components of Model Selection

• **Model evaluation metrics:** These are quantitative measures to assess model performance, such as:

- - SSE (Sum of Squared Errors) a.k.a. "Chi-squared"
	- AIC (Akaike Information Criterion)
	- BIC (Bayesian Information Criterion)

• **Model selection decision rules:** The criteria used to choose between models based on their evaluation metrics, e.g., "select the model with the lowest model evaluation metric" or "select the more complex

model only if it improves the evaluation metric by at least some value".

• **Model space search algorithms:** These are the procedures used to explore the space of possible models,

such as forward selection, backward elimination, or exhaustive search.

μ : *BGLOrder* → ℝ

δμ : (*BGLOrder*, *BGLOrder*) → *BGLOrder*

$$
f_{\delta,\mu} : \Omega_{BGL} \to BGLOrder
$$

Different approaches on the market

Akaike Information Criterion

$AIC = 2k - 2log(L)$

where k is the number of parameters and L the maximized value of the likelihood function for the model. It aims to find the model that minimizes information loss. ̂

Advantages:

- **•** Theoretically well-motivated
- **•** Easy to implement
- **•** Ubiquitous in other fields (e.g. time series analysis)
- **•** Allows for straightforward comparison of non-nested models

̂

Toy Study Design

• **Purpose:** To demonstrate the effectiveness of AIC in choosing BGL order. Compare result to

• **Data generation:** Simulate $B \to D^*l\nu$ decay data assuming true underlying order of (3,3,3),

• **Model fitting:** Fit all permutations of BGL orders from (1, 1, 1) to (3, 3, 3) to the simulated data

• **Comparison:** Apply AIC and NHT procedures to select the optimal BGL order. Show that our procedure produces unbiased estimates of $\mid V_{cb} \mid$ with correct coverage properties.

- the Nested Hypothesis Test (NHT) approach of Bernlochner et al. (2019).
- with covariance matrix from HFLAV that reflects current world average precision.
- using standard least squares fit.
-

|Vcb| pulls

10

Our D* averaged spectrum

NHT (without unitarity constraints)

AIC (without unitarity constraints)

NHT (with unitarity constraints)

13

Beyond Single Model Selection

• **Limitations of single model selection:** Choosing a single "best" model ignores model

• **Model averaging approaches:** These methods consider multiple models, weighing their

- uncertainty and can lead to overconfident inferences. Unnecessarily dichotomous.
- contributions based on their relative support from the data.
- **Accounting for model uncertainty:** By considering multiple models, we can more accurately reflect our uncertainty about the true underlying process.

Global AIC (gAIC)

where ΔAIC is the difference between a model's AIC and the minimum AIC in the set.

- **Advantages:** gAIC provides a more nuanced view of model performance, captures model selection uncertainty, and can lead to more robust predictions and parameter estimates.
- **Model uncertainty:** Accounts for the fact that multiple models may be plausible given the data.
- **Comprehensive view:** Offers a more nuanced understanding of the model space than single model selection.
- Δ_i = AIC_{*i*} − AIC_{min} | V_{cb} | = ∑ *i* $w_i|V_{cb}|_i$
	-

An approach that weighs multiple models based on their AIC scores, rather than selecting a single best model:

$$
w_i = \exp(-\frac{1}{2}\Delta_i)/\sum_j \exp(-\frac{1}{2}\Delta_j) \qquad \Delta_i =
$$

Without unitarity constraints With unitarity constraints

Outlook

- **Finalize current studies:** Complete ongoing analyses and perform robustness checks.
- \cdot Alternative metrics: Explore other model evaluation criteria like adjusted R^2 or Mallows's C_p to show that AIC also outperforms these.
- Incorporate external constraints: Investigate the impact of including lattice QCD constraints in the model selection process.

Imposing unitarity

∑ *i* a_i^2 /| V_{cb} | $2 \leq 1$ ∑ *i* b_i^2 /| V_{cb} | $2 + \sum$ *i* $c_i^2 / |V_{cb}|$ $2 \leq 1$

The double Fermi Dirac function (DFD) provides an approximate top-hat function and penalizes the χ^2 only if a boundary is hit. We use $w = 50$ for the transition.

• To impose unitarity, we include a penalty into the function of the form $\chi^2 \to \chi^2 - 2$ $\sum_{n=1}^{\infty}$ log DFD $a_i, \{b_i, c_i\}$ γ

• I.e. for each BGL coefficient we check if unitarity is violated, e.g. via Multiple choices for shape of theory error constraint thinkable

