$\mathcal{R}(D^{(*)})$ at LHCb

Greg Ciezarek, on behalf of the LHCb collaboration

CERN

September 24, 2024

$\overline{B} ightarrow D^{(*)} au^- \overline{ u}_{ au}$

- In the SM, the only difference between $\overline{B} \to D^{(*)} \tau^- \overline{\nu}_{\tau}$ and $\overline{B} \to D^{(*)} \mu^- \overline{\nu}_{\mu}$ is the mass of the lepton
- Ratio $R(D^{(*)}) = B(\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau}) / B(\overline{B} \to D^{(*)}\mu^-\overline{\nu}_{\mu})$ is sensitive to e.g charged Higgs, leptoquarks
 - Form factors mostly cancel (except helicity suppressed amplitude) \rightarrow reduced dependence on theory
- D vs D^* : different meson spin, so different physics sensitivity

Overview

• Three results:

- $R(D^*)$ and $R(D^0)$ with $\tau \rightarrow \mu \nu \nu$ (LHCb-PAPER-2022-039)
- $R(D^{*+})$ with $\tau \rightarrow \pi \pi \pi \nu$ (LHCb-PAPER-2022-052)
- $R(D^{*+})$ and $R(D^+)$ with $\tau \rightarrow \mu \nu \nu$ (LHCb-PAPER-2024-007)
- The two muonic analyses follow broadly the same strategy, will discuss together

- Difficulty: multiple neutrinos
 - No narrow peak to fit (in any distribution)
- Main backgrounds: partially reconstructed B decays
 - $B \to D^* \mu \nu, B \to D^{**} \mu \nu, B \to D^* D(\to \mu X) X \dots$
 - Reject these with charged track isolation
- · Also combinatorial, misidentified backgrounds

- Can use *B* flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component \rightarrow use approximation to access rest frame kinematics
 - Assume $\gamma \beta_{z, visible} = \gamma \beta_{z, total}$
 - \sim 20% resolution on B momentum, long tail on high side

• Can then calculate rest frame quantities - $m^2_{missing}$, E_{μ} , $q^2\equiv M(\ell
u)$

LHCb-PAPER-2024-007

6/25

Fit strategy

- Projections of fit to isolated data shown
- All uncertainties on template shapes incorporated in fit:
 - Continuous variation in e.g different form factor parameters
 - Shape variations for all major backgrounds controlled using data samples
- (Understanding agreement between simulation and data also essential)

One pion sample

LHCb-PAPER-2024-007

イロト 不得 トイヨト イヨト

э

- Sample with exactly one additional pion: D^{**} backgrounds
 - Include the four known resonances, individually floating yields
 - Updated model from Bernlochner, Ligeti: all parameters unconstrained

Two pion sample

LHCb-PAPER-2024-007

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

- Sample with exactly two additional pions: heavier D^{**} backgrounds (including any non-resonant)
- No theory model: cocktail sample, variation in q^2 slope

Kaon sample

LHCb-PAPER-2024-007

A D > A P > A B > A B >

ж

- Sample with at least one additional kaon: $B \rightarrow D^0 DX$ backgrounds
 - Also strongly constrained by the previous two samples

LHCb-PAPER-2024-007

Misidentified backgrounds

- Misidentified hadron component derived from data
- Use RICH PID to decompose pions, kaons etc
- Put them back together with different weights, momentum smearing

LHCb-PAPER-2022-039 11/25

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Misidentified backgrounds

- Inverted muon ID: select misidentified muons
 - We have these backgrounds under good control
 - Systematic uncertainty \sim 4 times smaller than original muonic $R(D^*)$

LHCb-PAPER-2022-039 12/25

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$D^0\mu^+$ signal sample

 $B^- \rightarrow D^0 \ell^- \overline{\nu}_\ell$ with BCL

- Helicty-suppressed terms constrained by theory, other parameters float freely
- $B^- \rightarrow D^0 \ell^- \overline{\nu}_{\ell}$ form factors from HPQCD
- $\overline{B}{}^0 \rightarrow D^{*+} \ell^- \overline{\nu}$ form factors from: Bigi, Gambino, Schacht

13/25

$D^{*+}\mu^{-}$ signal sample ($D^{(*)}$)

LHCb-PAPER-2022-039

• Excellent fit quality throughout

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$D^+\mu^+$ signal sample

LHCb-PAPER-2024-007

A D > A P > A B > A B >

э

• Neutral isolation rejects $D^{*+} \rightarrow D^+ \pi^0$, reduces cross feed \rightarrow use the D^{*+} as a signal sample, next slide

$D^{*+}\mu^+$ signal sample (D^+)

LHCb-PAPER-2024-007

(日) (四) (日) (日) (日)

- Very nice additional sample reconstructed with neutral! $D^{*+} \rightarrow D^+ \pi^0$

15/25

Data/MC agreement

 Generally percent level agreement, some localised discrepancies → systematic

Full uncertainties

D^0

Internal fit uncertainties	$\sigma_{R(D^*)}(\times 10^{-2})$	$\sigma_{R(D^0)}(\times 10^{-2})$	Correlation
Statistical uncertainty	1.8	6.0	-0.49
Simulated sample size	1.5	4.5	
$B \rightarrow D^{(*)}DX$ template shape	0.8	3.2	
$\overline{B} \rightarrow D^{(*)} \ell^- \overline{\nu}_{\ell}$ form-factors	0.7	2.1	
$\overline{B} \rightarrow D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
$\mathcal{B} (\overline{B} \rightarrow D^* D^s (\rightarrow \tau^- \overline{\nu}_\tau) X)$	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} (\overline{B} \rightarrow D^{**}\tau^-\overline{\nu}_{\tau})$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional model uncertainty	$\sigma_{R(D^*)}(\times 10^{-2})$	$\sigma_{R(D^0)}(\times 10^{-2})$	
$B \rightarrow D^{(*)}DX$ model uncertainty	0.6	0.7	
$\overline{B}_{s}^{0} \rightarrow D_{s}^{**} \mu^{-} \overline{\nu}_{\mu}$ model uncertainty	0.6	2.4	
Baryonic backgrounds	0.7	1.2	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
Data/simulation corrections	0.4	0.8	
MisID template unfolding	0.7	1.2	
Normalization uncertainties	$\sigma_{R(D^*)}(\times 10^{-2})$	$\sigma_{R(D^0)}(\times 10^{-2})$	
Data/simulation corrections	$0.4 \times \mathcal{R}(D^*)$	$0.6 \times \mathcal{R}(D^0)$	
$\tau^- \rightarrow \mu^- \nu \overline{\nu}$ branching fraction	$0.2 \times \mathcal{R}(D^*)$	$0.2 \times \mathcal{R}(D^0)$	
Total systematic uncertainty	2.4	6.6	-0.39
Total uncertainty	3.0	8.9	-0.43

D^+

Source	$R(D^+)$	$R(D^{*+})$
Form factors	0.023	0.035
$\overline{B} \rightarrow D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B} \rightarrow D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.085
Statistical uncertainty	0.043	0.081

LHCb-PAPER-2022-052

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Compared to muonic $\mathcal{R}(D^*)$:
 - Large $\overline{B}{}^0 \rightarrow D^{*+} \mu^- \overline{\nu}_{\mu}$, $B \rightarrow D^{**} \mu^+ \nu$ backgrounds absent
 - Additional $B \rightarrow D^* \pi \pi \pi X$ backgrounds
 - $B \rightarrow D^* DX$ with $D \rightarrow \pi \pi \pi X$
- Need external input: measure rate relative to $B
 ightarrow D^* \pi \pi \pi$
- Now updated with 2015+2016 data

3. Hadronic tau

LHCb-PAPER-2022-052 19/25

Removing $B \rightarrow D^* \pi \pi \pi X$

- Can use decay topology to remove direct $B \rightarrow D^* \pi \pi \pi X$ decays:
- If the $\pi\pi\pi$ vertex is displaced from the B vertex, cannot be direct $B \rightarrow D^*\pi\pi\pi X$
- Can remove a large, poorly measured background
 - And control the remainder
- $B \rightarrow D^*DX$ major physics background remaining

LHCb-PAPER-2022-052

3. Hadronic tau

D_s BDT

- $[\pi\pi\pi]$ lifetime discriminates between tau and $B \rightarrow D^*DX$
- Can use partial reconstruction techniques to reconstruct D peak in B → D^{*+}D (not B → D^{*}DX)
- $\tau \to \pi \pi \pi \nu$ is mostly a1(1260), $D \to \pi \pi \pi X$ mostly isn't
 - Use the $\pi\pi\pi$ (sub) structure to separate $\overline{B}{}^0 \to D^{*+}\tau^-\overline{\nu}_{\tau}$ from $B \to D^{*+}D_s^-X$
- Put everything in an MVA: kinematics, Dalitz, partial reconstruction, neutral isolation

20/25

LHCb-PAPER-2022-052 21/25

D_s control

- Use data to control $B \rightarrow D^*DX$ modelling
- Can use $D_{(s)} \to \pi\pi\pi$ mass peak to select a pure $B \to D^*DX$ sample
- This controls the $B \rightarrow D^*DX$ modelling, but not the $D \rightarrow \pi\pi\pi X$

LHCb-PAPER-2022-052

3. Hadronic tau

· Again, use data to control background modelling

• Use low BDT region to control $D_s \rightarrow \pi\pi\pi X$ substructure

22/25

э

LHCb-PAPER-2022-052

3. Hadronic tau

Fit

- 3D template fit in BDT, q², tau lifetime to determine signal yield
- · Control fit input implemented via constraints

æ

Uncertainties (relative)

Source	Systematic uncertainty on $\mathcal{K}(D^*)$ (%)
PDF shapes uncertainty (size of simulation sample)	2.0
Fixing $B \rightarrow D^{*-}D_{s}^{+}(X)$ bkg model parameters	1.1
Fixing $B \to D^{*-}D^{0}(X)$ bkg model parameters	1.5
Fractions of signal τ^+ decays	0.3
Fixing the $\overline{D}^{**} \tau^+ \nu_{\tau}$ and $D_s^{**+} \tau^+ \nu_{\tau}$ fractions	+1.8
Knowledge of the $D_e^+ \rightarrow 3\pi X$ decay model	1.0
Specifically the $D_e^+ \rightarrow a_1 X$ fraction	1.5
Empty bins in templates	1.3
Signal decay template shape	1.8
Signal decay efficiency	0.9
Possible contributions from other $ au^+$ decays	1.0
$B \rightarrow D^{*-}D^{+}(X)$ template shapes	+2.2
$B \rightarrow D^* - D^0(X)$ template shapes	1.2
$B \rightarrow D^{*-}D^{+}(X)$ template shapes	0.3
$B \rightarrow D^{*-} 3\pi X$ template shapes	1.2
Combinatorial background normalisation	+0.5
Preselection efficiency	-0.8 2.0
Kinematic reweighting	0.7
Vertex error correction	0.9
PID efficiency	0.5
Signal efficiency (size of simulation sample)	1.1
Normalisation mode efficiency (modelling of $m(3\pi)$)	1.0
Normalisation efficiency (size of simulation sample)	1.1
Normalisation mode PDF choice	1.0
Total systematic uncertainty	+6.2 -5.9
Total statistical uncertainty	5.9

Conclusion

- Joint measurements of R(D)and R(D*) with D⁰ and D+: LHCb-PAPER-2022-039 and LHCb-PAPER-2024-007
- D⁰ update with Run 2 data ongoing
- Hadronic $\mathcal{R}(D^*)$ updated with partial run 2 data
 - LHCb-PAPER-2022-052
- Important caveat: measurements assume SM shape+uncertainties for $\overline{B} \rightarrow D^{(*)} \tau^- \overline{\nu}_{\tau}$
 - Fine for a SM null test
 - If there is non lefthanded vector new physics, measurements of $\mathcal{R}(D^{(*)})$ no longer valid
- Much more to come!