Measurement of the $B \rightarrow D^{**} \tau^{-} \overline{\nu}_{\tau}$ decay rate

Guy Wormser IJCLab Orsay

on behalf of the LHCb Collaboration

Chanllenge in Semileptonic decays, Vienna, September 24,

R(D*) and D** feed-down

Ever since the first $R(D)-R(D^*)$ measurement 12 years ago, the possibility that the observed excess is due to D^{**} feed-down has been mentioned $B \rightarrow D^{**}\tau\nu$; $D^{**} \rightarrow D(^*)X$ B can be B° or B⁺; D^{**} can be D^{***} or D^{**+} This is a common systematics to all $R(D^{(*)})$

measurements in all experiments

Present discrepancy with SM : 3.3 σ

The D** family

•
$$D_1(2420)$$
 $\frac{1}{2}(1^+)$ • $D_2^*(2460)$ $\frac{1}{2}(2^+)$
• $D_1'(2430)$ $\frac{1}{2}(1^+)$ • $D_0^*(2400)$ $\frac{1}{2}(0^+)$

The $D_0(2400)$ does not decay to D* D_1 and D_2^* are narrow states

Chanllenge in Semileptonic decays, Vienna, September 24,

Theoretical predictions in RMP

Florian U. Bernlochner, Manuel Franco Sevilla, Dean J. Robinson, and Guy Wormser, Rev. Mod. Phys. 94, 015003

- $\mathcal{R}(D_0^*) = 0.08(3),$ $\mathcal{R}(D_1') = 0.05(2),$ $\mathcal{R}(D_1) = 0.10(2),$ $\mathcal{R}(D_2^*) = 0.07(1).$
- These ratios give BR(B \rightarrow D** $\tau\nu$)/BR(B \rightarrow D** $\mu\nu$). Typically BR(B \rightarrow D** $\mu\nu$) is 10% BR(B \rightarrow D* $\mu\nu$)
- In addition, these R ratios need to be multiplied by BR(D** \rightarrow D* π) The visible BR(B->D** τv) are therefore expected to be ~0.02-0.03 %

Depent	Final State				
Farent	$D^*\pi^+$	$D^*\pi^0$	$D\pi^+$	$D\pi^0$	$\sum D\pi\pi$
D_2^*	0.26	0.13	0.40	0.20	
D_1	0.42	0.21			0.36
D'_1	0.67	0.33			
D_0			0.67	0.33	

Chanilenge in Semileptonic decays, Vienna, September 24,

4

Recent review of D** feed-down recipes in

Florian U. Bernlochner, Manuel Franco Sevilla, Dean J. Robinson, and Guy Wormser, Rev. Mod. Phys. 94, 015003

- R(D**) assumptions for feed-down subtraction :
 - BABAR 0.18
 - BELLE ~0.15
 - LHCb muonic : 0.12
 - LHCb-hadronic –Run1 : Sum is 11% of $D^*\tau v$ yield
 - LHb-Hadronic Run2 : uses the mentioned theoretical predictions
- ALL experiments allow for a 50% systematic uncertainty of this subtraction
- But they are all way above the theoretical predictions, hence potentially minimizing R(D*) discrepancy wrt SM prediction by ~0.5 σ

Conclusion

- It is quite important to try to consolidate the R(D**) predictions by measurements !!
- Two approachs are being used :
 - Gather as many measurements as possible of the B \rightarrow D**W* system with W* decaying into $\mu\nu$, π , D_s, a₁, ... and compare with the various theoretical models (e.g. **arxiv hep-ph 2012.11608)**
 - The first three channels are being studied by LHCb !! The fourth one can be done also (ancillary result of this analysis)
 - π : LHCb-PAPER-2016-026
 - D_s: LHCb-PAPER-2024-001 (JHEP08(2024) 165)
 - $\mu\nu$: ongoing effort
 - Try to measure at least one R(D**) ratio : the goal of this analysis

Goal and strategy

- Dual goal:
 - Measure R(D₁(2420)°) per se to confront with SM prediction
 - Measure feed-down from $D^{**}\tau v$ decays into $R(D^{*+})$ measurements
- General strategy
 - Starting point : $D^*\tau\nu$ candidates, with τ reconstructed in the $\pi\pi\pi$ final state
 - Reconstruct D**° states in the D*+π⁻ final state by adding an extra track to the D* candidate compatible with the B vertex
 - Separate the 3 D** states from the mass spectrum (and angular distributions)
 - Background description from the data-driven WS sign sample $\mathsf{D}^{**}\pi^+$
 - Measure the D^{**°} $\tau\nu$ yield with same analysis flow as R(D^{*}) (LHCb-PAPER-2022-051)
 - Assume isospin invariance and deduce D**+ feed-down in R(D*) analysis

Chanllenge in Semileptonic decays, Vienna, September 24,

Selection

- Key requirement require 1 extra track at the D* vertex which is tagged as the only extra track at the B° vertex
- This track is not one of the 6 tracks forming the $D^*\tau v$ candidate. It is a pion (no kaon, no electron)
 - D° to $K3\pi$ could be a source of background
- No Ghost track, no cloned slow pion
- The track is not compatible with the tau vertex (5-prong D_s decay is a large source of background extra-tracks)

Physics background sources

- True D^{**} events (peaking in the D^{*+} π ⁻ mass distribution)
 - $D^{**}Ds^{(,*,**)}$
 - D**3pi prompt background
 - Is there any D**DK background : the answer turned out to be NO (severe lack of phase space)
- Fake D** from a true D* combined with an extra pion
 - Random extra pion
 - Extra pion from physics :
 - D*+D*-. Extratrack from the B vertex
 - D*+Ds;Ds->5 prongs, Extratrack from the tau vertex
 - D*D°K/π Extratrack from the B vertex
 - D*DK/D->4 or 5 prongs Extratrack from the D° vertex
 - etc

Search for D**DK background : Study of $D^*\pi D^*X$ events

• The isoPlusVtx package can be used to consider one pion extra-track at the B/D* vertex together with one Kaon extra-track at the 3π vertex

LHCb-PAPER-2024-037

Chanllenge in Semileptonic decays, Vienna, September 24,

11

Estimate of the D**DX component

To compute the number of potential D**D°X in the fit sample, consider D*D°X exclusive in the MC (6k) and in the fit sample (720)

The D**D°X is less than 6 events in the fit sample

Black RS Red WS

Trane Joliot-Curie Mistribution with a fully reconstructed Der 24,

Inclusive DeltaM peak after vetoing reconstructed D*D° and D*D* events

Preliminary Yields : D_1 2456±75 D_2 633±69

$B^{-} \rightarrow D^{*} D_{s}^{-}$ is chosen as the normalisation channel

- Same underlying physics, same vertex topology, same final state when the D_s^- is reconstructed in the $\pi^-\pi^-\pi^+$ final state
- Amplitude analysis for the decay $B^- \rightarrow D^{*+}\pi^- D_s^-$ recently published by LCHb (LHCb-PAPER-2024-001, JHEP08(2024) 165), using the D_s^- to KK π mode
- In this publication, the various D** contributions are measured as well as the BR(B⁻→D*+π⁻D_s^{*-})
- In this analysis, we build a control sample by reconstructing the D_s^- in the $\pi^-\pi^-\pi^+$ final state

$$\mathcal{R} = \frac{\mathcal{B}(B^+ \to D^{*-} D_s^+ \pi^+)}{\mathcal{B}(B^0 \to D^{*-} D_s^+)} = 0.173 \pm 0.006 \pm 0.008,$$

$$\mathcal{R}^* = \frac{\mathcal{B}(B^+ \to D^{*-}D_s^{*+}\pi^+)}{\mathcal{B}(B^+ \to D^{*-}D_s^+\pi^+)} = 1.31 \pm 0.07 \pm 0.08.$$

Component	Fit fraction (%)
$D_1(2420)$ S-wave	$3.8 \pm 1.7 \pm 0.8^{+1.3}_{-0.1}$
$D_1(2420)$ D-wave	$71.0 \pm 4.4 \pm 4.6^{+0.0}_{-6.0}$
$D_1(2430)$ S-wave	$14.2 \pm 2.5 \pm 2.4^{+3.1}_{-2.0}$
$D_1(2430) D$ -wave	$0.5 \pm 0.9 \pm 1.5^{+0.2}_{-0.5}$
$D_2^*(2460)$	$11.7 \pm 1.4 \pm 0.8^{+0.0}_{-0.7}$
$D_0(2550)$	$2.3 \pm 0.8 \pm 0.7^{+0.3}_{-1.7}$
$D_1^*(2600)$	$4.8 \pm 1.0 \pm 0.9^{+1.1}_{-2.0}$
$D_2(2740) P$ -wave	$0.4 \pm 0.4 \pm 0.2^{+0.1}_{-0.1}$
$D_2(2740)$ F-wave	$2.3 \pm 0.7 \pm 0.9^{+0.4}_{-0.1}$

100

Chanllenge in Semileptonic decays, Vienna, September 24,

15

$D_{s}^{-} \rightarrow \pi^{-} \pi^{-} \pi^{-} \pi^{+}$ control sample associated to a D**° candidate (521 ±12 events)

VICLab Irène Joliot-Curie

Chanllenge in Semileptonic decays, Vienna, September 24, 2024

D**3 π mass distribution for events with 3 π mass in the D_s peak and after sideband subtraction of the Δ m peak

Chanllenge in Semileptonic decays, Vienna, September 24, 2024

Binned LikelihoodTemplate fit for signal extraction

- 2 $D^{**}\tau v$: D_1 and D_2 templates are lumped together
- 7 D**D_s templates
 - $D_1 D_s, D_s^*$
 - $D_2 D_s D_s^*$
 - D⁷ D_s, D_s* • D** D_s**
- D**3 π prompt sample
- $D^{*+}\pi^+$ WS sample
- 2 extra samples which are not covered by WS : D*+D*-(X), D*- DK+/ π^+

The D*+ π + background can be used to describe the fake D** background

It must be complemented by contributions producing only RS combinations : $B \rightarrow D^*D^*(X)$ and $B^{\circ} \rightarrow D^*(DK)^{-}$

Fit variables : ΔM , q², antiD_s_BDT

Fit of good quality : χ^2 /ndof = 0.89

Chanllenge in Semileptonic decays, Vienna, September 24,

Projection not included in the fit: Δm_q^2

channenge in Jennieptonie accays, vienna, Jepteniser 27,

Projections for variables not included in the fit: D*3 π mass, 3 π mass, τ_{τ} , cos θ

Fit results using for fit variables Δm , q², BDT

LHCb-PAPER-2024-037

Fit Parameter	Yield
$(D_1^0(2420) + D_2^{*0}(2460))$	$\tau \nu = 122.6 \pm 23.2$
$D_1'^0(2400)\tau\nu$	96.7 ± 24.9
$D_1^0(2420)D_s^{*+}$	317.1 ± 19.2
$D_1(2420)D_s^+$	235.4 ± 15.9
$D_2^{*0}(2460)D_s^+$	39.0 ± 3.1
$D_2^{*0}(2460)D_s^{*+}$	48.1 ± 12.4
$D^{**}D_s^{**+}$	31.5 ± 30.3
$D_1'^0(2400)D_s^{*+}$	140.7 ± 28.1
$D_1'^0(2400)D_s^+$	112.5 ± 17.1
D^{**} WrongSign	8793.8 ± 73.7
D^{**} Prompt	34.6 ± 7.0
$D^{*-}D^{*+}(X)$	51.4 ± 55.3
Extra K	248.3 ± 48.4

Preliminary

Chanllenge in Semileptonic decays, Vienna, September 24,

Evidence of the decay $B \rightarrow D^{**} \tau \nu_{\tau}$

- The fit is repeated forcing the signal to 0
- To include systematic uncertainty in the significance, the $D^{**}D_s^{**}$ is left free to float and the D_2/D_1 ratio is allowed to vary
- Based on the χ^2 increase, LHCb can claim evidence for the decay $B^- \rightarrow D^{***} \tau^- v_{\tau}$ with a significance of 3.5 σ

Form factor studies with HAMMER

- Studies performed in contact with Dean Robinson and Michele Petrucci (Many thanks to them!)
- Three models under scrutiny
 - ISGW2 used for the MC generation
 - BLR : F. Bernlochner, Z. Ligeti, D. Robinson, Phys.Rev. D97 (2018) 075011
 - LLSW A. K. Leibovich, Z. Ligeti, I. W. Stewart and M. B. Wise, Phys.Rev.Lett. 78 (1997) 3995, (hep-ph/970321)
- Global reweighting used as baseline
- (Binned reweighting in q^2 - $p_{3\pi}$ also checked)

q² distribution for the 3 models

LHCb-PAPER-2024-037

q² distribution similar for BLR and LLSW but rather different from ISGW

4% change in D** τv yield

Chanllenge in Semileptonic decays, Vienna, September 24,

Final systematic uncertainty budget

Source	Relative systematic uncertainty in $\%$	
Form factors	3.7	LHCb-PAPER-2024-037
$D_2^*(2460)^0$ fraction	4.4	Preliminarv
Finite size of the simulated sample	4.1	
Variables and binning choices	5	
Other potential background	3.6	
Efficiency determination	4.3	
Selection and analysis	2	
Vertex resolution effects	4.0	
WS background description	2	
Total	11.4	

B \rightarrow D^{**°} τ ν_{τ} physics results

• Using the normalisation channel yield , one finds:

LHCb-PAPER-2024-037 *Preliminary*

$$\frac{\mathcal{B}(B^- \to (D_1(2420)^0 + D_2^*(2460)^0)\tau^-\overline{\nu}_{\tau})}{\mathcal{B}(B^- \to (D_1(2420)^0 + D_2^*(2460)^0)D_s^{(*)-})} = 0.19 \pm 0.05,$$

• from which

 $\mathcal{B}(B^{-} \to (D_1(2420)^0 + D_2^*(2460)^0)\tau^{-}\overline{\nu_{\tau}}) \times \mathcal{B}(D_1(2420)^0, D_2^*(2460)^0 \to D^{*+}\pi^{-}) = (0.051 \pm 0.013 \, (\text{stat}) \pm 0.006 \, (\text{syst}) \pm 0.009 \, (\text{ext}))\%,$

and

 $\mathcal{R}(D_1(2420)^0 + D_2^*(2460)^0) = 0.13 \pm 0.03 \,(\text{stat}) \pm 0.01 \,(\text{syst}) \pm 0.02 \,(\text{ext}).$ SM prediction is 0.09 ±.02 :This result is compatible with SM within 1 σ

$\label{eq:chi} {\sf HCb-PAPER-2024-037} \ {\sf Preliminary} \\ {\sf Feed-down into R(D^*) analysis} \\$

- A $D^{**}\tau v$ event can be reconstructed as a signal in D^{**} analysis or can end up as a background event in the R(D^{*}) fit
- The subtraction rate in the LCHb-PAPER-2022-51 hadronic τ R(D*) ^{publication} is based on SM theoretical prediction
- Using the simulation, one can measure the probability that an D** candidate ends up either as D** signal or as the R(D*) feeddown.
- One measures as well the D**° vs D**+ feed-down probability
- An experimental upper limit of 13.1 % events at 95 % c.l of D** feed-down in R(D*) and a prediction of 8.9%±2.1% has been established.
- It is larger but compatible at 2.9 σ level with present estimate of subtraction level.

Conclusions *Preliminary*

• Evidence has been obtained for the decay $B^{-} \rightarrow D^{**} \tau^{-} v_{\tau}$ at 3.5 σ level : first ever measurement of this decav

 $\mathcal{B}(B^{-} \to (D_1(2420)^0 + D_2^*(2460)^0)\tau^{-}\overline{\nu}_{\tau}) \times \mathcal{B}(D_1(2420)^0, D_2^*(2460)^0 \to D^{*+}\pi^{-}) = (0.051 \pm 0.013 \text{ (stat)} \pm 0.006 \text{ (syst)} \pm 0.009 \text{ (ext)})\%,$

- Preference for D_1 dominance at 2σ level.
- R(D**°) has been measured in agreement with SM model prediction of 0.09 ± 0.02

 $\mathcal{R}(D_1(2420)^0 + D_2^*(2460)^0) = 0.13 \pm 0.03 \,(\text{stat}) \pm 0.01 \,(\text{syst}) \pm 0.02 \,(\text{ext}).$

• The D** feed-down fraction in LHCb R(D*) paper has been found to be 8.9%±2.1%

LFU Prospects using hadronic τ decays in LHCb

- The basis of the hadronic τ analysis in LHCb formulated 10 years ago!
- Since then :
 - Measurement of R(D*) in 2017 (Run1) and 2022 (2 fb-1 of Run2 data) (LHCb-PAPER-2017-027 and LHCb-PAPER-2022-052)
 - Measurement of R(Λ_c) using Run1 data in 2021 (LHCb-PAPER-2021-044)
 - Measurement of D* polarization in D*τν decays in 2023 (LHCb-PAPER-2023-020)
 - Measurement of R(D**) today (LHCb-PAPER-2024-037)
- In preparation

- $q^2 < 7 \,{
 m GeV}^2/c^4 : 0$ $q^2 > 7 \,{
 m GeV}^2/c^4 : 0$ q^2 whole region : 0
- $\begin{array}{l} 0.51\pm 0.07\,({\rm stat})\pm 0.03\,({\rm syst}),\\ 0.35\pm 0.08\,({\rm stat})\pm 0.02\,({\rm syst}),\\ 0.43\pm 0.06\,({\rm stat})\pm 0.03\,({\rm syst}), \end{array}$
- Measurement of R(D*) with the full Run1-Run2 statistics
- $R(\Lambda_c)$ and $R(J/\psi)$ at a later stage
- Full angular analysis for $D^*\tau\nu$ decays (on a somewhat longer term)

Backup slides

Relative rates in D*+ final states using R(D**) from theory and measured D** $\mu\nu$

- BR(B⁺ \rightarrow D₁(2420)° τ v;D°₁ \rightarrow D*+)=3 10⁻⁴ (BR all= 0.075%)
- BR(B⁺ \rightarrow D₂(2460)° τ v);D°₂ \rightarrow D*+)=0.7 10⁻⁴ (0.028%
- BR(B⁺ \rightarrow D'₁(2430)° τ v);D'°₁ \rightarrow D*+)=1.35 10⁻⁴ 0.02%)
- BR(B° \rightarrow D1(2420)⁺ τ v;D₁⁺ \rightarrow D*+)=1.4 10⁻⁴ (BR all= 0.067%)
- BR(B° \rightarrow D2(2460)⁺ $\tau \nu$);D₂⁺ \rightarrow D*⁺)= 0.34 10⁻⁴ 0.026%
- BR(B° \rightarrow D'1(2430)⁺ $\tau \nu$);D'₁⁺ \rightarrow D*+)=0.75 10⁻⁴ 0.025%

Note: in DECAY.DECAY the total BR are .13%,.2% and .2% respectively!!! The BR to D*+ are 2/3 for D**° and 1/3 for D**+

Fits results

Method	Signal Yield	c2
ISGW	120.3±22.8	110.2
BLPR-2D	122.9±23.8	112.0
LLSW-2D	111.2±21.1	110.5
BLPR-Full reweighting	120.7±21.4	102.6
LLSW-Full reweighting	124.7±20.9	103.6

Based on these results, we assign a 4% systematic uncertainty , half of the largest difference observed.

Systematic wrt binning and fit variables

Fit variables	Binning	$(D_1^0(2420)D_2^{*0}(2460))\tau\nu_{\tau}$	$D_1^{\prime 0}(2400)\tau\nu_{\tau}$
BDT- Δm - q^2 (nominal)	5x8x3	120.3 ± 22.8	100.0
BDT- Δm	5x10	97.7 ± 27.5	57.5
BDT- Δm - q^2	5x10x4	120.4 ± 21.5	107.7
BDT- Δm - q^2	5x8x2	111.7 ± 25.2	78
BDT- Δm_q^2 - $\cos\theta$	5x21x5	132.5 ± 18.1	159
BDT- Δm - $q_{D^{**}}^2$	5x8x4	115 ± 25.7	74.3
$BDT-\Delta m-\cos\theta$	5x8x6	118 ± 22.7	96.6

Flattened distributions for the 120 bins

LHCb Preliminary 9 fb⁻¹

Effect on R(D*) on the hadronic R(D*) results (LHCb-PAPER-2022-051)

- D** τv subtracted rate is 3.5 % : 2.1% from B° and B⁺, 1.4% from B_s
- This new result indicates a higher subtraction rate from B° and B⁺ of 8.9%±2.1%
 - Higher R
 - Higher D'₁ rate
- Leaving the B_s contribution constant, this would shift down 2015-2016 R(D*) result by 6.8 %, ie ~6% for the combined Run1-2015-2016 result
- This would represent 1 σ of systematic uncertainty and 0.7 σ for the total uncertainty for this measurement

$\mathsf{D}^{**}\tau v$ feed down simulated prediction in the published result

Index \boldsymbol{j}	State	$D^{**}\tau\nu$ yield	Weight	Weighted yield ${\cal N}_j$
1	$D_1(2420)^0$	124	0.3497	43.36
2	$D_2(2460)^0$	54	0.1667	9.00
3	$D_1'(2430)^0$	186	0.1023	19.03
4	$D_1(2420)^+$	175	0.3263	57.10
5	$D_2(2460)^+$	95	0.1225	11.64
6	$D_1'(2430)^+$	267	0.1174	31.35
7	from D'_{s1}	222	0.5	111
	Total	1123		282.48

LHCb simulation 8.1k $D^*\tau v$ signal

Chanllenge in Semileptonic decays, Vienna, September 24,

$D^{**}\tau\nu$ feed down new simulated prediction

Particle	Yield	Weighted yield
$D_{-1}(2420)0$	1171.5	409.7
D*_2(2460)0	531.2	88.6
$D_{-1}(H)0$	1748.1	178.8
$D_1(2420) +$	1663.1	542.7
$D^{*}_{2}(2460) +$	812.5	99.5
$D_1(H) +$	2528.1	296.8
$D_{s1}(2536) +$	1780.7	302.7
D*_s2+	163.6	81.8

LHCb simulation 81k $D^*\tau v$ signal

