

Inclusive semileptonic B^0_s meson decays via a sum-of-exclusive modes technique

Based on M. De Cian, N. Feliks, M. Rotondo, K. Vos, JHEP06(2024)158

Wien, September 23 - 27, 2024

Michel De Cian, Heidelberg

- B-factories can measure $|V_{cb}|$ inclusively and exclusively. The inclusive measurement is made possible by fully reconstructing the other B mesons in the event.
- Detectors at hadron machines (=LHCb) so far measured $|V_{cb}|$ only exclusively, but also have large samples of B_s^0 and Λ_b^0 hadrons. No full event reconstruction possible.
- Can we combine the two?

$\left|V_{cb} ight|$ - Inclusive and exclusive

- Measuring $|V_{cb}|$: Determine the statistical moments of the $m(X_c)$, q^2 or E_ℓ^* distributions.
- From this information, determine the non-perturbative parameters of the Heavy Quark Expansion.
- Will only talk about $m(X_c)$, it's the only precisely reconstructible quantity at a hadron collider.

"Das Ganze ist mehr als die Summe seiner Teile"

- The full $m(X_c)$ spectrum can only be reconstructed as a sum-of-exclusives (at a hadron collider).
- A pioneering measurement was done by CDF using $B^+ o D^{(*)-} \pi^+ \ell \nu$ decays.
- However, this works best if there are many non-overlapping resonances, avoiding interference.
- This is (mostly) the case for $B^0_s \to X_{cs} \ell \nu$ decays, but much less for $B^0/B^+ \to X_c \ell \nu$ decays.
- The task then is: Measure all exclusive branching fractions of the $B^0_s o X_{cs} \ell
 u$ spectrum.

Heavy Quark Expansion

$$\begin{split} & \mathcal{B}(\bar{B}^0_s \to X_{cs} \ell^- \bar{\nu}_\ell) = 66.85 |V_{cb}|^2 \left[\left(1 - \frac{\mu_\pi^2}{2m_b^2} \right) - 0.40 \alpha_s^2 - 0.17 \alpha_s^3 - 1.91 \frac{\mu_G^2}{m_b^2} \right. \\ & + \left. \alpha_s \left(-0.39 + 0.36 \frac{\mu_\pi^2}{m_b^2} \right) - 16.68 \frac{\rho_D^3}{m_b^3} + 1.91 \frac{\rho_{LS}^3}{m_b^3} \right] \end{split}$$

$$\begin{split} M_n &= \langle \left(m_H^2\right)^n \rangle = \int (m_H^2)^n \frac{1}{\Gamma_{SL}} \frac{d\Gamma_{SL}}{dm_H^2} dm_H^2. \\ M'_n &= \langle \left(m_H^2 - \langle m_H^2 \rangle\right)^n \rangle = \int (m_H^2 - M_1)^n \frac{1}{\Gamma_{SL}} \frac{d\Gamma_{SL}}{dm_H^2} dm_H^2. \end{split}$$

- $r = \frac{m_c}{m_b}$, y_i , z_i perturbatively calculable parameters.
- $\mu_{\pi}^2, \mu_G^2, \rho_D^3, \rho_{LS}^3$ non-perturbative parameters of interest.
- Link non-perturbative parameters to moments of hadronic mass spectrum.

What is the spectrum?

- As said before, all we need to know is the branching fraction of the $B_s^0 \to X_{cs} \ell \nu$ decays.
- And the branching fraction(s) of the $X_{cs} \rightarrow XY$ decays.
- And then we can build ourselves as spectrum, measure the moments and determine the HQE parameters

What is the spectrum?

Describe what you want to see

hadronic spectrum of semileptonic Bs meson decays

50 / 4000

×

What is the spectrum?

• Well then, let's look at the contributions one-by-one.

Ground and first excited state

 $\mathcal{B}(B^0_s \to D^+_s \ell \nu)$

- Known with about 10% relative precision. Possibility for a further reduction (?)
- + $\mathcal{B}(D^+_s \to K^+K^-\pi^+)$ known to about 2% relative precision.
- Could use different D_s^+ final state for less model dependence on $K^+ \ K^- \ \pi^+$ spectrum

Ground and first excited state

 $\mathcal{B}(B^0_s \to D^+_s \ell \nu)$

- Known with about 10% relative precision. Possibility for a further reduction (?)
- + $\mathcal{B}(D^+_s \to K^+K^-\pi^+)$ known to about 2% relative precision.
- Could use different D_s^+ final state for less model dependence on K^+ $K^ \pi^+$ spectrum

 $\mathcal{B}(B^0_s \to D^{*+}_s \ell \nu)$

- Known with about 10% relative precision. Possibility for a further reduction (?)
- + $\mathcal{B}(D_s^{*+}\!\to D_s^+\gamma)$ known to about 0.5% relative precision.

First two higher excited states

• The first two higher resonances are below the DK threshold, so exclusively decay to D_s^+ mesons.

 $\mathcal{B}(B^0_s \to D^{*+}_{s0} \ell \nu)$

- No measurement has been published. We assume $(0.3\pm0.3)\%$ BR
- $\mathcal{B}(D_{s0}^{*+} \to D_s^+ \pi^0)$ known to about 20% relative (and absolute) precision (measured by BESIII).
- The π^0 is very soft, resulting in a small reconstruction efficiency, but clearly doable.

First two higher excited states

• The first two higher resonances are below the DK threshold, so exclusively decay to D_s^+ mesons.

 $\mathcal{B}(B^0_s \to D^{*+}_{s0} \ell \nu)$

- No measurement has been published. We assume $(0.3\pm0.3)\%$ BR
- $\mathcal{B}(D_{s0}^{*+} o D_s^+ \pi^0)$ known to about 20% relative (and absolute) precision (measured by BESIII).
- The π^0 is very soft, resulting in a small reconstruction efficiency, but clearly doable.

 $\mathcal{B}(B^0_s \to D_{s1}^{'+} \ell \nu)$

- No measurement has been published. We assume $(0.3\pm0.3)\%$ BR
- $\mathcal{B}(D_{s1}^{'+} \to D_s^{*+} \pi^0)$ known to about 20% relative (and absolute) precision.
- The π^0 is very soft, resulting in a small reconstruction efficiency, but clearly doable.
- The decay $D_{s1}^{'+} \to D_s^+ \gamma$ also exists, with 18% BR.

Second two higher excited states

• The second two higher resonances are above the DK threshold.

 $\mathcal{B}(B^0_s \to D^+_{s1} \ell \nu)$

- DØ and LHCb, \approx 20% relative uncertainty. Easy to improve.
- $\mathcal{B}(D^+_{s1} \to D^{*0}K^+)$ about 15% rel. uncertainty (new BES result).
- Experimentally "easy", $D^{st 0}$ can be reconstructed as D^0

10

Second two higher excited states

• The second two higher resonances are above the DK threshold.

 $\mathcal{B}(B^0_s \to D^+_{s1} \ell \nu)$

- DØ and LHCb, \approx 20% relative uncertainty. Easy to improve.
- $\mathcal{B}(D^+_{s1} \to D^{*0}K^+)$ about 15% rel. uncertainty (new BES result).
- Experimentally "easy", $D^{st 0}$ can be reconstructed as D^0

 $\mathcal{B}(B^0_s \to D^{*+}_{s2} \ell \nu)$

- LHCb, about 35% relative uncertainty. Easy to improve.
- $\mathcal{B}(D^{*+}_{s2} o D^0 K^+)$ about 15% rel. uncertainty (new BES result).
- Experimentally "easy" to reconstruct

10

Higher resonances

- Higher resonances exist and have been observed.
- They are not considered for this study.
- Measuring a branching fraction $\mathcal{B}(B^0_s \to (D^{*+}_{sJ} \to D^0K^+)\ell\nu)$ is experimentally not difficult, but $\mathcal{B}(D^{*+}_{sJ} \to D^0K^+)$ is not doable at a hadron machine (or very hard)
- How about Belle 2?

Non-resonant decays

- $B^0_s \to D^0 K^+ \ell \nu$ has been observed in LHCb, but no branching fraction value has been published.
- We extract the shape from a "modified Goity-Roberts model" (describing $B \to D \pi \ell \nu$ decays), accounting for the K π difference.
- Lately a new, model-independent approach for $B \to D \pi \ell \nu$ decays was presented can it be applied to $B^0_s \to D^0 K^+ \ell \nu$ decays as well? Yesterday I learned, it will!

Total BR

$$\Gamma_{SL}(B_s^0)/\Gamma_{SL}(B^0) = 1 - (0.018 \pm 0.008).$$

$$\mathcal{B}(\overline{B}_s^0 \to X_c \ell^- \bar{\nu}_\ell) = (10.05 \pm 0.31)\%,$$

- Summing up all individual BRs, including an estimate for the non-resonant contribution from Phys. Rev. D 100 (2019) 3, 031102, and using isospin-arguments, we found the sum larger than the theoretical prediction for the semileptonic BR.
 - This needs to be updated with the BES III measurements for $\mathcal{B}(D^+_{s1}\to D^{*0}K^+)$ and $\mathcal{B}(D^{*+}_{s2}\to D^0K^+)$
- What we did instead is to constrain the non-resonant contribution to be the difference between the 6 resonant decays and the theoretical prediction.

Resulting spectrum

Resulting moments & HQE parameters

Moments	Conf. A	M_2'	M'_3	Conf. B	M'_2	M_3'	L = 0 and $L = 1$
$M_1 \; [\text{GeV}^2]$	$4.82{\pm}~0.08$	0.74	0.55	$4.78{\pm}0.02$	0.72	0.45	$4.79 {\pm} 0.02$
$M_2' \; [\text{GeV}^4]$	1.36 ± 0.29		0.96	$1.22{\pm}0.05$		0.90	$0.82{\pm}0.09$
$M_3' \; [{\rm GeV^6}]$	4.7 ± 1.8			$3.86{\pm}0.28$			$1.07{\pm}0.11$

- Use hyperfine splitting $(m_{B_s^{*0}}^2 m_{B_s^0}^2) = \frac{4}{3}C_{\text{mag}}\mu_{G^2}(B_s^0) + \mathcal{O}(1/\text{ m}_b)$ to obtain constraint for $\mu_G^2(B_s^0)$: $\frac{\mu_G^2(B_s^0)}{\mu_G^2(B^0)} = 1.14 \pm 0.10$
- Take ρ_{LS}^3 from B^0 decays and increase uncertainty to account for $SU(3)_F$ breaking: $\rho_{LS}^3(B^0_s)\simeq -(0.13\pm0.10)~{\rm GeV}^3$
- μ_π^2 and ρ_D^3 are left free in the fit.

Resulting moments & HQE parameters

- We then obtain:
- $\mu_{\pi}^2 = (0.46 \pm 0.12) \; {
 m GeV}^2$ and therefore ${\mu_{\pi}^2(B_s^0) \over \mu_{\pi}^2(B^0)} \sim 0.96$
- $ho_D^3 = (0.16 \pm 0.06)~{
 m GeV^3}$ and therefore $rac{
 ho_D^3(B_s^0)}{
 ho_D^3(B^0)} \sim 0.86$
- The (constrained) values of $\mu_G^2(B_s^0)$ and $ho_{LS}^3(B_s^0)$ are very close to the input constrains.
- The main reason for the low values of μ_{π}^2 and ρ_D^3 is the small value of M'_3 ($4.7 \, {\rm GeV^6}$) compared to the prediction ($8.8 \, {\rm GeV^6}$).
- This might be due to an underestimation of higher-mass resonances in the toy model.
 - This needs to be updated with the new results from BES III on the D_{s1}^+ and D_{s2}^{*+} branching fractions.

$|V_{cb}|$ & correlation

• Using the experimentally measured $\mathcal{B}(B_s^0 \to X \ell \nu) = (9.6 \pm 0.8)\%$ we calculate $|V_{cb}|$ to be $(41.8 \pm 2.0) \cdot 10^{-3}$.

• While μ_{π}^2 and ρ_D^3 are strongly correlated, $|V_{cb}|$ only exhibits a weak correlation to μ_{π}^2 .

What is needed to turn this into a (precise) measurement?

- An improved measurement of the $B_s^0 \to D_s^+ \ell \nu$ and $B_s^0 \to D_s^{*+} \ell \nu$ branching fractions (mostly experimental).
- Measurements of $B_s^0 \to D_{s0}^{*+} \ell \nu$ and $B_s^0 \to D_{s1}^{'+} \ell \nu$ (experimental), including solid predictions (or measurements) for the D_{s0}^{*+} and $D_{s1}^{'+}$ decays (theoretical / experimental).
- Updated measurements for $B^0_s o D^+_{s1}\ell\nu$ and $B^0_s o D^{*+}_{s2}\ell\nu$ (experimental)
- And an improved handling of the non-resonant contribution (theoretical/experimental).

Conclusion

- Presence of mostly narrow resonances in hadronic spectrum in $B_s^0 \to X_{cs} \ell \nu$ allow for a sum-of-exclusives approach to an inclusive measurement.
- Performed a proof-of-concept. It shows a significant difference in ρ_D^3 for B_s^0 compared to B^0 and to the prediction, most likely coming from a mismodeling of the X_{cs} spectrum clearly needs more study.
- Most input measurements can be experimentally and theoretically improved. Most importantly, the decay $B_s^0 \rightarrow D^0 K^+ \ell \nu$ needs a better understanding.
- With these improvements, a precise measurement of the HQE parameters in semileptonic $B^0_s\,$ decays can be obtained.

$$b - A - c - K - u - P$$

1	D_{s0}^{*+}	L	$D_{s1}^{'+}$	L	O_{s1}^{+}	D_{s2}^{*+}	-
2317.8	$\pm 0.5 \mathrm{MeV}$	$2459.5 \pm$	$\pm 0.6{ m MeV}$	$2535.11 \pm$	$0.06\mathrm{MeV}$	2569.1 ± 0	$0.8{ m MeV}$
< 3	$.8\mathrm{MeV}$	$< 3.5{\rm MeV}$		$0.92\pm0.05{\rm MeV}$		$16.9\pm0.7\mathrm{MeV}$	
$D_s^+\pi^0$	$100^{+0}_{-20}\%$	$D_s^{*+}\pi^0$	$48\pm11\%$	$D^{*+}K^0_{\rm S}$	$85\pm12\%$	D^0K^+	seen
$D_s^+\gamma$	< 5%	$D_s^+\gamma$	$18\pm4\%$	$D^{*0}K^{+}$	100%	$D^+K_{\rm S}^0$	seen
$D_s^{*+}\gamma$	< 6%	$D_s^+\pi^+\pi^-$	$4.3\pm1.3\%$	$D^+\pi^-K^+$	$2.8\pm0.5\%$	$D^{*+}K^0_S$	seen
$D_s^+ \gamma \gamma$	<18%	$D_s^{*+}\gamma$	< 8%	$D_s^+\pi^+\pi^-$	seen		
		$D_{s0}^{*+}\gamma$	$3.7^{+5.0}_{-2.4}\%$	D^+K^0	< 34%		
				D^0K^+	< 12%		

B_s^0 Decay	$\mathcal{B}[\%]$ (Conf. A)	$\mathcal{B}[\%]$ (Conf. B)
$\overline{B}{}^0_s \to X_{cs} \ell \bar{\nu}_\ell$	$10.05{\pm}0.31$	$10.05 {\pm} 0.31$
$\overline{B}{}^0_s \to D^+_s \ell^- \bar{\nu}_\ell \ [38]$	$2.44{\pm}0.23$	$2.44 \pm \ 0.10$
$\overline{B}{}^0_s \to D^{*+}_s \ell^- \bar{\nu}_\ell \ [38]$	$5.3{\pm}0.5$	5.30 ± 0.22
$\overline{B}{}^0_s \to D^{*+}_{s0} \ell^- \bar{\nu}_\ell \text{ (see text)}$	$0.3{\pm}0.3$	$0.30{\pm}0.03$
$\overline{B}{}^0_s \to D_{s1}^{\prime +} \ell^- \bar{\nu}_\ell$ (see text)	$0.3{\pm}0.3$	$0.30{\pm}0.03$
$\overline{B}{}^0_s \to D^+_{s1} \ell^- \bar{\nu}_\ell$	$0.98{\pm}0.20$	$0.98{\pm}0.05$
$\overline{B}{}^0_s \to D^{*+}_{s2} \ell^- \bar{\nu}_\ell$	$0.58{\pm}0.20$	$0.58{\pm}0.04$
$\overline{B}{}^0_s \to D^{(*)} K \ell^- \bar{\nu}_\ell \text{ (see text)}$	$0.15 {\pm} 0.15$	$0.150 {\pm} 0.015$