# Prospects for inclusive semileptonic charm decays based on arXiv:2408.10063

Alex Gilman in collaboration with Florian Bernlochner, Sneha Malde, Markus Prim, Keri Vos, and Guy Wilikinson

> 25/09/2024Challenges in Semileptonic B Decays Vienna, Austria



#### The (not as) Heavy Quark Expansion



- Heavy-Quark Expansion (HQE) expands in  $\frac{\Lambda_{QCD}}{m_a}$
- ► Since m<sub>c</sub> < m<sub>b</sub>. converges more slowly for charm than beauty, but more sensitive to hadronic matrix elements
- Inclusive semileptonic charm decays provide complementary analysis using the HQE and unique sensitivity to intrahadronic interactions in heavy quark systems

#### Inclusive SL Charm decays: Previous Experimental Work

- Previous studies of inclusive decays by CLEO-c and BESIII measured inclusive SL branching fractions and lab-frame momentum spectra for D<sup>0</sup>, D<sup>+</sup>, D<sup>+</sup><sub>s</sub> and Λ<sup>+</sup><sub>c</sub>
- Used no information on hadronic system X in  $D/\Lambda_c \rightarrow X \ell \nu$
- Measured decay widths indicate breakdown of factorisation





$$\frac{\Gamma_{SL}(D^+)}{\Gamma_{SL}(D^0)} = 0.985 \pm 0.028$$
$$\frac{\Gamma_{SL}(D_s^+)}{\Gamma_{SL}(D^0)} = 0.790 \pm 0.025$$
$$\frac{\Gamma_{SL}(\Lambda_c^+)}{\Gamma_{SL}(D^0)} = 1.28 \pm 0.05$$

PRD 81 (2010) 052007 PRD 104 (2021) 012003 PRD 107 (2023) 052005

Inclusive Semileptonic Charm Decays

#### Inclusive SL Charm decays: Previous Theoretical Work

- Measured  $D^0$ ,  $D^+$  and  $D_s^+$  momentum spectra analysed to constrain effects of weak-annihilation in SL *B* decay rates
  - Estimated upper limits of 2% from Gambino & Kamenik<sup>1</sup> and 1% from Ligeti, Luke, & Manohar<sup>2</sup>
- Study of HQE in charm and it's potential application for determination of |V<sub>cs</sub>| and |V<sub>cd</sub>| from Fael, Mannel, Vos<sup>3</sup>
- Study of total & SL decay widths of charmed hadrons from King et al.<sup>4</sup>
- ▶ Recent analysis of measured momentum spectra to estimate  $\alpha_s$  at the charm-mass from Wu *et al.*<sup>5</sup>
- Recent progress on inclusive charm decays on the lattice<sup>6</sup> (See R. Kellerman's talk)

<sup>1</sup> Nucl. Phys. B 840 (2010) 424
 <sup>2</sup> PRD 82 (2010) 033003
 <sup>3</sup> JHEP 12 (2019) 067
 <sup>4</sup> King, Lenz, Piscopo, Rauh, Rusov, Vlahos, JHEP 08 (2022) 241
 <sup>5</sup> Wu, Lou, Che, Li, Huang, Ye, arXiv 2406.16119
 <sup>6</sup> Kellerman, Barone, Hashimoto, Jüttner, Kaneko PoS (Lattice2023) 272

4/18

#### Time to include more inclusive charm

- Limitations of previous measurements:
  - ▶ No information on final-state hadronic system  $X \Rightarrow$  No access  $q^2$  or  $M_X$

▶ Due to lack of information on X, cannot separate  $c \to s$  and  $c \to d$  transitions and  $\left(\frac{|V_{cd}|}{|V_{cs}|}\right)^2 \sim 5\%$  not small

- Only measure lab-frame momentum spectra, and transformation to rest frame is non trivial in D<sup>+</sup><sub>s</sub> measurements due to production through D<sup>\*+</sup><sub>s</sub>D<sup>-</sup><sub>s</sub>
- ► BESIII has robust datasets of D<sup>0</sup>, D<sup>+</sup>, D<sup>+</sup><sub>s</sub>, and Λ<sup>+</sup><sub>c</sub> datasets that are ideal to deliver a new program of inclusive measurements in charmed hadrons

### Beijing Electron Spectrometer III (BESIII)



- Housed in the Beijing Electron-Positron Collider Mk. II at the Institute of High Energy Physics
- Hermiticity: 93% of  $4\pi$
- Gaseous Drift Chamber for tracking
- Time-of-Flight system for PID
- Calorimeter for e<sup>-</sup> identification and neutral particle reconstruction:
- Resistive Plate Chamber for identification of hard muons
- Things to keep in mind:
  - ► Low boost ⇒ (almost) no displaced vertices
  - ► Momentum of final state particles in the lab frame: 50 - 1500 MeV/c
  - e<sup>+</sup>e<sup>-</sup> leads to very clean environments
  - $\sim 100\%$  trigger efficiency

6/18

Inclusive Semileptonic Charm Decays

#### Overview of Proposed Measurement Technique



Double-tag technique with golden D tag modes:  $D^0 \rightarrow K^- \pi^+$  $D^+ \rightarrow K^- \pi^+ \pi^+$ .  $D^+_{\circ} \rightarrow K^- K^+ \pi^+ (etc.)$  $\Lambda_c^+ \to p K^- \pi^+ (etc.)$ 

- Identify charged lepton
- Reconstruct hadronic system X from additional
  - $K^0_S \to \pi^+\pi^-$ ,  $\Lambda \to p\pi^-$  with displaced vertices
  - Additional charged tracks with PID hypotheses ( $K^{\pm}$ ,  $\pi^{\pm}$ ,  $p^{\pm}$ )
  - Isolated calorimeter depositions
- Correct for detector resolution effects through linear calibration procedure similar to Belle, Bellell<sup>1</sup>

<sup>1</sup>PRD 104 (2021) 112011, PRD 107 (2023) 072002

#### **BESIII** datasets

|                        | $D^0$  | $D^+$  | $D_s^+$     | $\Lambda_c^+$ |
|------------------------|--------|--------|-------------|---------------|
| $E_{cm}$ GeV           | 3.773  | 3.773  | 4.130-4.230 | 4.600-4.699   |
| Int. Lumi. $[fb^{-1}]$ | 21     | 21     | 7.1         | 4.5           |
| Estimated DT Yields    | 200000 | 700000 | 30000       | 4300          |

- ► Large D<sup>0</sup>, D<sup>+</sup> datasets recently collected, ~ 7× the previous BESIII dataset, ~ 30× the CLEO dataset
- ▶  $D_s^+$  data collected through  $D_s^{*+}D_s^-$  due to higher constructions
  - $\blacktriangleright~D_s^{*+}\to \gamma D_s^+$  decay must be reconstructed for full-event kinematic information, i.e.  $q^2$

#### Measured $D^+$ distributions from Fast Simulation

 Verified on simulation samples based on EvtGen with estimates of BESIII resolution and detection efficiencies



► Additionally require  $|E_{\text{miss}} - p_{\text{miss}}| < 500 \text{ MeV}$  to remove poorly reconstructed events (primarily due to  $K_L^0$  and  $K_S^0 \rightarrow \pi^0 \pi^0$ )

9/18

#### Measured $D^+$ distributions from Fast Simulation



#### Measured Distribution



- ► BESIII  $e^{\pm}$  ID imposes  $E_{\ell} > 200 \text{ MeV}$
- Discontinuous  $M_X$ distribution due to  $D \rightarrow Ke\nu/D \rightarrow \pi e\nu$

#### Gilman

Inclusive Semileptonic Charm Decays

#### Prospects for isolating $c \rightarrow s$ and $c \rightarrow d$ transitions

•  $K^{\pm}$  identification and  $K^0_S/\Lambda$  reconstruction allows us to determine strangeness of hadronic system X

• Corrections required due to  $K_L^0$ ,  $K_S^0 \to \pi^0 \pi^0$ .



Inclusive Semileptonic Charm Decays

#### Corrections on measured moments

• Linear calibration for resolution :  $q_{\mathsf{cal}}^{2n} = (q_{\mathsf{reco}}^{2n} - c_n) / m_n$ (same for  $E_{\ell}^n$ )



• Corrections for non-linearity  $(C_{\text{calib}})$  and selection/acceptance  $(C_{\text{gen}})$ 



Inclusive Semileptonic Charm Decays

#### Estimated sensitivity on spectral moments

- Based on fast simulation of currently available data, we estimate our sensitivity to spectral moments, including estimates of BESIII systematics
- Uncertainty budgets vary for different parameters (details in paper)
- ▶ We compare to Gambino & Kamenik<sup>1</sup> analysis of  $E_{\ell}$  moments from CLEO-c measurements



University of Oxford

Inclusive Semileptonic Charm Decays

#### Setting up the HQE in Charm

► Following work of Fael, Mannel, & Vos<sup>1</sup>, expand  $c \to s$  transitions in  $\frac{\Lambda_{QCD}}{m_c}$ ,  $\alpha_s(m_c)$ , and  $\frac{m_s}{m_c}$  to order  $\frac{1}{m_s^3}$ .

Similar to B HQE setup, with notable differences

• HQE parameters  $(\mu_{\pi}, \mu_G, \rho_D, \rho_{LS})$  vary for different hadrons

Introduce four-quark terms at weak-annihilation scale

$$2m_D T_1(\mu_{\rm WA}) \equiv \langle D | (\bar{c}_v \psi P_L s) (\bar{s} \psi P_L c_v) | D \rangle$$

 $2m_D T_2(\mu_{\rm WA}) \equiv \langle D | (\bar{c}_v \gamma^\mu P_L s) (\bar{s} \gamma_\mu P_L c_v) | D \rangle$ 

can be absorbed in a single weak-annihilation parameter

$$\tau_0 = 128\pi^2 \left(T_1 - T_2\right) + 8\log\left(\frac{\mu_{\rm WA}^2}{m_c^2}\right)\rho_D^3.$$

•  $\rho_D^3 \& \tau_0$  important inputs to predictions<sup>2</sup> of charmed hadron lifetimes

<sup>&</sup>lt;sup>1</sup>JHEP 12 (2019) 067

<sup>&</sup>lt;sup>2</sup>King, Lenz, Piscopo, Rauh, Rusov, Vlahos, JHEP 08 (2022) 241

#### Extracting the HQE parameters

▶ Normalized spectral moments for  $q^2$ ,  $E_\ell$  defined through integrals of allowed phase space (~  $E_\ell > 200$  MeV), considering n = 4

$$\langle M^n \rangle \equiv \frac{\int (M)^n \frac{\mathrm{d}\Gamma}{\mathrm{d}M} \,\mathrm{d}M}{\int \frac{\mathrm{d}\Gamma}{\mathrm{d}M} \,\mathrm{d}M}$$

•  $\Lambda_c$  setup similar to D decays, but no contributions from  $ho_{LS}$  and  $\mu_G$ 

- Exploratory study to estimate experimental precision
- ► Fix quark masses to  $\overline{\text{MS}}$  definitions from 2020 2+1+1 FLAG avgs.<sup>1</sup>  $\overline{m}_s(2 \text{ GeV}) = (93.44 \pm 0.68) \text{ MeV}$   $\overline{m}_c(\overline{m}_c) = (1.280 \pm 0.013) \text{ GeV}$

and  $\alpha_s(\overline{m}_c) = 0.386$  from RunDec<sup>2</sup> with  $n_f = 3$ 

 Investigation of proper quark-mass definitions and other theory uncertainties for future work

<sup>&</sup>lt;sup>1</sup>EPJC 80 (2020) 113

<sup>&</sup>lt;sup>2</sup>Chetyrkin, Kuhn, Steinhauser, Comp. Phys. Comm. 133 (2000) 42

#### Expected experimental sensitivity to HQE Parameters



- Very strong prospects for first determinations of charm HQE parameters with current data and first HQE analysis of inclusive heavy baryon decays.
- $\blacktriangleright$  Possibility for larger  $D_s^+$  and  $\Lambda_c^+$  datasets in near future

16/18

#### A new puzzle piece: Inclusive $|V_{cs}|$ ?

- ► As in the B system, we can use HQE parameters and measurements of inclusive branching fractions to determine |V<sub>cs</sub>|
- ▶ With currently available data/inputs we estimate experimental precision of 3.3% from  $D^0/D^+$  and 3.8% from  $D^+_s$  on  $|V_{cs}|$ 
  - $\blacktriangleright$  In combination,  $\sim 2\%$  experimental precision
  - $\blacktriangleright$  Expected to improve with better measurements of  $D^0/D^+$  exclusive branching fractions and more  $D_s^+$  data
- Compare to  $< \mathcal{O}(1\%)$  total precision from both  $D \to K\ell\nu$  and  $D^+_s \to \ell\nu$  ,
  - Meaningful comparisons of  $|V_{cs}|$  from inclusive SL, exclusive SL, and pure leptonic determinations
- $\blacktriangleright$  Similar possibilities for comparisons on  $|V_{cd}|,$  subject to isolating  $c \rightarrow d$  at BESIII

#### Summary

- Inclusive charm decays provide excellent opportunities for better-understanding the HQE and weak-annihilation effects in heavy hadrons
- Currently available BESIII data can be utilised to provide first measurements of HQE parameters in charm hadrons and first measurements of HQE parameters in heavy baryons
- $\blacktriangleright$  Strong prospects for competitive inclusive determinations of  $|V_{cs}|,$  maybe also for  $|V_{cd}|$
- Achieving the above requires further work and collaboration from both experiment and theory

#### BACKUPS

#### $D^+$ Systematics

|                                                             | $\mu_{\pi}^2$ | $\mu_G^2$ | $ ho_D^3$ | $\rho_{LS}^3$ | $	au_0$ |
|-------------------------------------------------------------|---------------|-----------|-----------|---------------|---------|
| Full                                                        | 8.49          | 4.47      | 0.30      | 6.72          | 5.28    |
| Stat.                                                       | 4.99          | 0.85      | 0.06      | 3.34          | 1.59    |
| MC Stat.                                                    | 3.14          | 1.42      | 0.07      | 2.00          | 2.71    |
| $\epsilon_{\mathrm{track.}}$                                | 2.28          | 2.91      | 0.20      | 3.56          | 1.07    |
| $\sigma_{ m track.}$                                        | 0.17          | 0.03      | 0.00      | 0.12          | 0.06    |
| $\epsilon_{K_S^0}$                                          | 3.24          | 1.66      | 0.15      | 2.08          | 1.92    |
| $\sigma_{K_{c}^{0}}^{S}$                                    | 0.07          | 0.06      | 0.00      | 0.05          | 0.04    |
| $\epsilon_{\gamma}$                                         | 1.53          | 0.93      | 0.04      | 0.95          | 0.94    |
| $\sigma_{\gamma}$                                           | 0.51          | 0.25      | 0.04      | 0.28          | 1.10    |
| PID                                                         | 0.03          | 0.03      | 0.00      | 0.04          | 0.02    |
| $\mathcal{B}(D^+ \to \eta' \ell \nu_\ell)$                  | 0.40          | 0.07      | 0.02      | 0.52          | 1.05    |
| $\mathcal{B}(D^+ \to \eta \ell \nu_\ell)$                   | 1.40          | 0.32      | 0.05      | 1.39          | 2.17    |
| $\mathcal{B}(D^+ \to K^{*-} \ell \nu_\ell)$                 | 2.63          | 0.61      | 0.04      | 1.68          | 0.49    |
| $\mathcal{B}(D^+ \to K^- \ell \nu_\ell)$                    | 2.18          | 0.86      | 0.06      | 2.24          | 0.47    |
| $\mathcal{B}(D^+ \to \omega \ell \nu_\ell)$                 | 0.60          | 0.89      | 0.08      | 0.16          | 0.93    |
| $\mathcal{B}(D^+ 	o \pi^- \ell \nu_\ell)$                   | 1.60          | 1.28      | 0.04      | 0.52          | 2.34    |
| $\mathcal{B}(D^+ \to \rho^- \ell \nu_\ell)$                 | 0.95          | 1.05      | 0.06      | 1.33          | 0.65    |
| $\mathcal{B}(D^+ \to (K\pi)_{S-\text{wave}} \ell \nu_\ell)$ | 4.11          | 1.75      | 0.04      | 1.47          | 1.32    |

Inclusive Semileptonic Charm Decays

## $D_s^+$ Systematics

|                                             | $\mu_{\pi}^2$ | $\mu_G^2$ | $ ho_D^3$ | $ ho_{LS}^3$ | $	au_0$ |
|---------------------------------------------|---------------|-----------|-----------|--------------|---------|
| Full                                        | 94.54         | 101.15    | 3.05      | 92.91        | 94.44   |
| Stat.                                       | 34.58         | 9.63      | 0.64      | 28.61        | 18.03   |
| MC Stat.                                    | 25.55         | 25.78     | 1.06      | 21.32        | 15.39   |
| $\epsilon_{\mathrm{track.}}$                | 22.50         | 28.12     | 0.96      | 27.57        | 21.09   |
| $\sigma_{ m track.}$                        | 8.43          | 10.08     | 0.53      | 5.64         | 4.20    |
| $\epsilon_{K^0_s}$                          | 7.98          | 6.90      | 0.22      | 6.68         | 12.05   |
| $\sigma_{K^0_S}$                            | 8.56          | 10.05     | 0.52      | 5.69         | 4.22    |
| $\epsilon_{\gamma}$                         | 7.90          | 4.28      | 0.24      | 11.25        | 2.37    |
| $\sigma_\gamma$                             | 10.19         | 7.87      | 0.56      | 8.82         | 7.07    |
| PID                                         | 8.56          | 10.03     | 0.52      | 5.68         | 4.21    |
| $\mathcal{B}(D_s \to \eta' \ell \nu_\ell)$  | 54.18         | 9.78      | 0.21      | 27.81        | 10.61   |
| $\mathcal{B}(D_s \to \eta \ell \nu_\ell)$   | 33.33         | 90.26     | 2.34      | 60.96        | 86.46   |
| $\mathcal{B}(D_s \to f_0 \ell \nu_\ell)$    | 14.43         | 3.31      | 0.16      | 8.57         | 3.12    |
| $\mathcal{B}(D_s \to K^{*-} \ell \nu_\ell)$ | 30.21         | 21.02     | 0.96      | 30.77        | 5.91    |
| $\mathcal{B}(D_s \to K^- \ell \nu_\ell)$    | 34.83         | 12.75     | 0.21      | 26.67        | 15.53   |
| $\mathcal{B}(D_s \to \phi \ell \nu_\ell)$   | 33.44         | 19.63     | 0.22      | 36.21        | 23.75   |