

Challenges in Semileptonic B decays

Campus Akademie, Vienna, 23-27 September 2024

Prospects for exclusive measurements of $|V_{ub}|$ at LHCb

Marta Calvi University of Milano-Bicocca and INFN

On behalf of the LHCb Collaboration

Introduction

- b→ulv transitions can serve as a playground for probing EW and strong interactions and to measure the CKM element |V_{ub}|.
- Exclusive decays are the best target for LHCb, exploiting large b production at LHC and precise measurement of decay products in the detector.
- Interplay between inclusive and exclusive measurements from different channels can help to best constrain $|V_{ub}|$ value.
- This talk focus: studies on $B^0_s \rightarrow K^- \mu^+ \nu_\mu$ and $B^+ \rightarrow \rho^0(\pi^+ \pi^-) \mu^+ \nu_\mu$
- Additional interest in b→ulv transitions for SM tests and searches for New Physics effects, eg. in SMEF analysis (JHEP11(2023)023, JHEP08(2023)063 and others)
 - Future analysis on angular distributions or with $l=\tau$ will also provide valuable inputs.

Semileptonic decay reconstruction at LHCb

- B momentum reconstruction in semileptonic decays challenging at LHCb
 - Main production from gluons at LHC \rightarrow large variation of B momenta
 - LHCb forward acceptance \rightarrow partial coverage of the complete bb event .
- Using PV to SV direction as B flight direction we get $p_{\perp}(v) = -p_{\perp}(v)$
- Adding B mass constraint can solve E-conservation equations with a 2-fold ambiguity
 - Use regression algorithm to pick-up the best solution [JHEP02(2017)021] and evaluate q^2

$$q^2 = (P_\mu + P_\nu)^2$$

• Use corrected mass as discriminating variable

$$m_{\rm corr}(B^+) = \sqrt{m_{\rm vis}^2 + p_\perp^2} + p_\perp$$

 $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$

- First observation of the $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$ decay performed by LHCb with Run1 data (2fb⁻¹) PRL126, 081804 (2021)
- $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$ yields are normalized to $B_s^0 \rightarrow D_s^- \mu^+ \nu_{\mu}$ and the ratio of branching fractions is measured.
- The signal is split into two q² bins ($\gtrless7~GeV^2/c^4$) with similar yields

$$\begin{aligned} &\frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu)_{low \ q^2}}{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_\mu)_{full \ q^2}} = (1.66 \pm 0.08(stat) \pm 0.07(syst) \pm 0.05(D_s)) \times 10^{-3} \\ &\frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu)_{high \ q^2}}{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_\mu)_{full \ q^2}} = (3.25 \pm 0.21(stat)^{+0.16}_{-0.17}(syst) \pm 0.09(D_s)) \times 10^{-3} \end{aligned}$$

$|V_{ub}|/|V_{cb}|$ from $B_{s}^{0} \rightarrow K^{-}\mu^{+}\nu_{\mu}$

PhysRevLett.126.081804

• The ratio is determined from the relation $|V_{ub}|^2/|V_{cb}|^2 = \mathcal{R}_{\mathcal{B}}\mathcal{R}_{FF}$

where $\mathcal{R}_{\mathcal{B}}$ is the ratio of branching ratios and \mathcal{R}_{FF} the ratio of theoretical decay rates, dependent on form factors, integrated in the appropriate q² range.

- For b→K two different form factors calculations are used, according to their range of best accuracy, LCSR at low q² [PRD 100(2019)034501], LQCD at high q² [PRD 100(2019)034501]
- For $b \rightarrow D_s LQCD FF$ is used [PRD 101(2020)074513].

 $|V_{ub}|/|V_{cb}|(low q^2) = 0.0607 \pm 0.0015(stat) \pm 0.0013(syst) \pm 0.0008(D_s) \pm 0.0030(FF)$ $|V_{ub}|/|V_{cb}|(high q^2) = 0.0946 \pm 0.0030(stat)^{+0.0024}_{-0.0025}(syst) \pm 0.0013(D_s) \pm 0.0068(FF)$

- Contribution to systematic uncertainty from normalization mode is from 2.8% uncertainty on $\mathcal{B}(D_s \rightarrow KK\pi)$ and 4% from the D_s FF.
- $\mathcal{B}(B_s \rightarrow D_s \mu v)$, not used since measured by LHCb with the same data, has a 9.4% uncertainty.

 $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ systematic unc.

TABLE I. Relative systematic uncertainties on the ratio $\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_{\mu})/\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})$, in percent.

Uncertainty	All q^2	Low q^2	High q^2	
Tracking	2.0	2.0	2.0	— Hadronic interaction of extra K, π
Trigger	1.4	1.2	1.6	in D _s →KKπ
Particle identification	1.0	1.0	1.0	
$\sigma(m_{\rm corr})$	0.5	0.5	0.5	
Isolation	0.2	0.2	0.2	
Charged BDT	0.6	0.6	0.6	
Neutral BDT	1.1	1.1	1.1	
q^2 migration		2.0	2.0	No q ² unfolding
Efficiency	1.2	1.6	1.6	
Fit template	+2.3	+1.8	+3.0	Include background shape and
Total	-2.9 +4.0 -4.3	-2.4 +4.3 -4.5	-5.4 +5.0 -5.3	FF variation in the simulation

• Systematic uncertainties can be reduced with larger datasets and simulation

$B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ with Run2 data

- New $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$ analysis with Run2 data ongoing. Use 2016-18 data at \sqrt{s} =13 TeV.
- Aim at a measurement of $|V_{ub}|$ independent on $|V_{cb}|$.
- Exploits larger data set (~5x) of data to perform a binned measurement of the branching ratio, in O(10) q² bins
- The branching ratio is normalized with a well-known decay mode, chosen as $B^- {\rightarrow} J/\psi(\mu^+\mu^-) K^-$

$$\Delta \mathcal{B}_{i} = \frac{N_{sig,i}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig,i}} \frac{f_{u}}{f_{s}} \mathcal{B}_{norm}$$

- Signal yields determined from a template fit simultaneous on all q² bins.
- q² unfolding to obtain signal yields in true bins

 $N_{sig,i}$ signal yield in the q² bin N_{norm} normalization yield in the full q² range $\frac{\epsilon_{norm}}{\epsilon_{sig,i}}$ ratio of efficiencies $\frac{f_u}{f_s}$ ratio of B⁺ to B⁰_s production fractions \mathcal{B}_{norm} normalization branching ratio

$B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ Normalization

Chosen normalisation mode is $B^- \rightarrow J/\psi(\mu^+\mu^-)K^-$

- Very clean and large sample
 - small additional statistical uncertainty
- Same number of tracks and similar topology to signal when one muon is neglected.
 - reduced systematic uncertainty on efficiencies ratio
- Ratio of B_s to B^+ production fractions precisely measured by LHCb [PRD 104, 032005 (2021)] $f_s/f_d = 0.2539 \pm 0.0079$ at 13 TeV
- External systematic uncertainty from normalization will be slightly smaller than in Run1 measurement
 - 1.9% from $\mathcal{B}(B^- \rightarrow J/\psi(\mu^+\mu^-)K^-)$, 3.1% from f_s/f_u

$B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ Background

- Background from physics processes: shape modelled with simulation.
- Main sources are b \rightarrow c decays like $H_b \rightarrow (H_c \rightarrow K^-X)\mu^+\nu_\mu X'$ and $H_b \rightarrow c\overline{c}(\mu^+\mu^-)K^-X$ (concentrated in few q² bins).
 - Suppressed with multivariate classifier with kinematical and topological variables, trained on simulation.
- Contributions from $B_s^0 \rightarrow (K^{*-} \rightarrow K^- \pi^0) \mu^+ \nu_{\mu}$ with K*(892), K*₀(1430), K*₂(1430) with unreconstructed π^0
 - Unmeasured branching fractions
 - Poor knowledge of the expected q² shape, additional input would be useful
 - Some separation from signal due to the missing particle
 - Partially suppressed with neutral isolation criteria
- Smaller contributions from random $K^-\mu^+$ combinations and semileptonic decays with misidentified $K^-.$
 - Suppressed with multivariate classifier trained on $K^{\pm}\mu^{\pm}$ data and PID cuts. Shape modelled with data-driven methods.

 $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ signal fit

- Maximum-likelihood fit in HistFactory framework.
- Simultaneous in O(10) q^2 bins and three data-taking years. Bins optimization not final.

Toy MonteCarlo with signal and two physics background contributions

Prospects on $|V_{ub}|$ and FF determination in $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$

- Several FF scheme available to describe signal shape in simulation. Examples:
 - LCSR JHEP 08(2017)112
 - HPQCD 2014 PRD 90(2014)054506
 - RBC/UKQCD PRD 91(2015)074510
 - FNAL/MILC PRD 100(2019)034501
- Average of 3 LQCD results by FLAG21(Feb 23). BCL extrapolation.
- RBC/UKQCD update PRD 107 2023)114512 superseeding their previous results, with BGL.
- Bayesian inference JHEP 12 (2023) 175 with BGL
- LCSR&LQD combination arXiv:2308.04347, with modified BGL
- Baseline FF to be used not defined yet (FLAG24 average?)
 - Could provide results with different options.
 - Dependence of fitted signal yields on FF reduced using high number of bins (small variation of m_{cor} distribution inside the bin).
 - Dependence of signal efficiency per bin on FF to be detrmined.
- Same FF scheme will be used to fit $\frac{dB}{dq^2}$ distribution and determine $|V_{ub}|$ via

$$\frac{d\mathcal{B}}{dq^2} = \frac{d\Gamma_{sig}^0}{dq^2} |V_{ub}|^2 \tau_B$$

$$B^+ \rightarrow \rho^0(\pi^+\pi^-)\mu^+\nu_\mu$$

$B^+ \rightarrow \rho^0(\pi^+\pi^-)\mu^+\nu_\mu$ Introduction

- Branching ratio measured at BFactories. Large discrepancy between BaBar and Belle measurements.
- Preliminary Belle II measurement consistent with Belle.
- A new, precise measurement from LHCb will help to solve the tension.
- The large sample of LHCb data will allow a precise determination of the differential decay rate and a fit to |V_{ub}|
 - 1. arXiv:1005.3288/Phys.Rev.D83, 032007
 - 2. arXiv:1306.2781/Phys.Rev.D88,032005
 - 3. <u>arXiv:2407.17403</u>

Experiment	Branching Ratio (10 ⁻⁴)	Stat. (10 ⁻⁴)	Syst. (10 ⁻⁴)
BaBar ¹	1.00	0.10	0.17
Belle ²	1.83	0.10	0.10
Belle II 364 fb ⁻¹ preliminary ³	1.625	0.079	0.18

$B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ measurement at LHCb

- Goal: measure the differential branching fraction in bins of q² and extract the FF
- The ρ^0 decay exclusively via $\rho^0 \rightarrow \pi^+ \pi^-$
- The branching fraction is measured relative to a normalization decay mode chosen as $B^+ \rightarrow \overline{D}{}^0(\pi^+ \pi^-) \mu^+ \nu_\mu$

$$\left(\frac{\Delta \mathcal{B}}{\Delta q^2}\right)_i = \frac{N_{sig,i}}{q_{max,i}^2 - q_{min,i}^2} \quad \frac{\mathcal{B}_{norm}}{N_{norm}} \quad \frac{\epsilon_{norm}}{\epsilon_{sig,i}}$$

 $N_{sig,i}$ signal yield in the q² bin N_{norm} normalization yield in the full q² range $\frac{\epsilon_{norm}}{\epsilon_{sig,i}}$ ratio of efficiencies \mathcal{B}_{norm} normalization branching ratio

$B^+ \rightarrow \rho^0 (\pi^+ \pi^-) \mu^+ \nu_\mu$ Normalization

• Normalization mode chosen as $B^+ \rightarrow \overline{D}{}^0 \mu^+ \nu_{\mu}, \overline{D}{}^0 \rightarrow \pi^+ \pi^-$

 $B(B^+ \rightarrow \overline{D}^0(\pi^+ \pi^-) \mu^+ \nu_{\mu} = (3.34 \pm 0.14) \ 10^{-5}$ with a 4.2% relative uncertainty

- Same set of final state tracks to reduce systematic uncertainty in efficiency ratio
- Main physics backgrounds from $B^+ \not \to \overline D{}^{*0} \mu^+ \nu_\mu$ and $B^0 \not \to D^{*-} \mu^+ \nu_\mu$ partially reconstructed
- Normalisation yield extracted from a 1D template fit in the full q^2 region.
- Statistical uncertainty from normalization O(3%)

 $B^+ \rightarrow \rho^0 (\pi^+ \pi^-) \mu^+ \nu_\mu$

- Signal yield extracted from a 2D template fit to m_{cor} and $m_{\pi\pi}$ in O(10) non-uniform q² bins (approximate same yields).
 - two pion mass added as additional discriminating variable against background
- Shapes of m_{cor} and $m_{\pi\pi}$ modelled with templates histograms
- Extended maximum likelihood fit in the HistFactory framework
 - Signal simulated with BCL/BSZ_FFs [PRD104,034032 (2021)] and $m_{\pi\pi}$ shape reweighted to include $\rho-\omega$ interference

$B^+ \rightarrow \rho^0 (\pi^+ \pi^-) \mu^+ \nu_\mu$ Background

- Background from physics processes: modelled with simulation.
 - $B^+ \rightarrow D^0(\pi^+\pi^-X^0) \mu^+\nu_{\mu}(X)$ with X^0 = one or more neutral particles
 - $B^{+,0} \rightarrow X_{u}\mu^{+}\nu_{\mu}$ various charmless semileptonic decays
 - B⁺ $\rightarrow \pi^+\pi^-\mu^+\nu_\mu$ with non-resonant $\pi^+\pi^-$ This is the most critical background, having m_{cor} distribution similar to signal and $m_{\pi\pi}$ poorely constrained by external inputs.

B⁺→ $\pi^+\pi^-\mu^+\nu_\mu$ shapes from DFN/PYTHIA simulation [JHEP 06 (1999) 017] Phase-space simulation

- Combinatorial background: modelled with same-sign data.
- MisID background: modelled with data-driven methods.
- Background rejection mainly from multivariate classifiers with isolation variables, trained on simulation.

$B^+ \rightarrow \rho^0 \mu^+ \nu_\mu \Delta B_i$, $|V_{ub}|$ and FF determination

Analysis still blinded. Prospects:

- Expected statistical sensitivity on branching fraction per q² bin O(5%-6%), using 2018 data (~ 2fb⁻¹).
 - Systematic uncertainty O(5%-9%), dominated by uncertainty on $m_{\pi\pi}$ shape of the non-resonant component. External systematic uncertainty 4.2%.
- q² unfolding to obtain signal yield in true bins.
- Measurement of $|V_{ub}|$ and FFs from fit to dB/dq², following [PRD 104,034032 (2021)]
- Predictions of the FFs V(q²), A₁(q²) and A₁₂(q²) based on light-cone sum rules (LCSR) calculations valid in q² \leq 14GeV²/c⁴ [PRD 79,013008 (2009)].
- BCL/BSZ parametrisations to extrapolate FFs in the full region [JHEP08,098 (2016)]

Conclusions and outlook

- New measurements of $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$ and $B^+ \rightarrow \rho^0 (\pi^+ \pi^-) \mu^+ \nu_\mu$ decays expected from LHCb, with Run2 data.
- Other b \rightarrow ulv exclusive analysis on $\Lambda_{\rm b}$ and B_c decays under study.
- Run3 data-taking (~9 fb⁻¹ expected this year) will provide more data and open the path to improved analyses.
- Input from theory crucial for $|V_{ub}|$ determination.