

Challenges in Semileptonic B decays Campus Akademie, Vienna, 23-27 September 2024

1

Prospects for exclusive measurements of $|V_{ub}|$ at LHCb

Marta Calvi University of Milano-Bicocca and INFN

On behalf of the LHCb Collaboration

Introduction

- b \rightarrow ulv transitions can serve as a playground for probing EW and strong interactions and to measure the CKM element $|V_{ub}|$.
- Exclusive decays are the best target for LHCb, exploiting large b production at LHC and precise measurement of decay products in the detector.
- Interplay between inclusive and exclusive measurements from different channels can help to best constrain $|V_{ub}|$ value.
- This talk focus: studies on $\sf B^0_{\ s} \!\!\!\rightarrow \!\! K^-\mu^+\nu_\mu$ and $\sf B^+ \!\!\!\rightarrow \!\! \rho^0(\pi^+\pi^-)\mu^+\nu_\mu$
- Additional interest in b \rightarrow uly transitions for SM tests and searches for New Physics effects, eg. in SMEF analysis (JHEP11(2023)023, JHEP08(2023)063 and others)
	- Future analysis on angular distributions or with $I = \tau$ will also provide valuable inputs.

Semileptonic decay reconstruction at LHCb

- B momentum reconstruction in semileptonic decays challenging at LHCb
	- Main production from gluons at LHC \rightarrow large variation of B momenta
	- LHCb forward acceptance \rightarrow partial coverage of the complete bb event.
- Using PV to SV direction as B flight direction we get $p_{\perp}(v) = -p_{\perp}(vis)$
- Adding B mass constraint can solve E-conservation equations with a 2-fold ambiguity
	- Use regression algorithm to pick-up the best solution [JHEP02(2017)021] and evaluate q^2

$$
q^2 = (P_\mu + P_\nu)^2
$$

• Use corrected mass as discriminating variable

$$
m_{\rm corr}(B^+) = \sqrt{m_{\rm vis}^2 + p_\perp^2} + p_\perp
$$

 B^0 _s \rightarrow K⁻ μ ⁺ ν _{μ}

- First observation of the $\sf B^0_{\ s} \!\!\rightarrow\!\! K^-\mu^+\nu_\mu$ decay performed by LHCb with Run1 data (2fb⁻¹) PRL126, 081804 (2021)
- $B^0{}_s$ $\!\!>\!\!K^-\mu^+\nu_\mu^{}$ yields are normalized to $\ B^0{}_s$ $\!\!>\!\!D_s^-\mu^+\nu_\mu^{}$ and the ratio of branching fractions is measured.
- The signal is split into two q² bins (≷7 GeV²/c⁴) with similar yields

$$
\frac{{\cal B}(B_s^0 \to K^- \mu^+ \nu_\mu)_{low\; q^2}}{{\cal B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)_{full\; q^2}} = (1.66 \pm 0.08(stat) \pm 0.07(syst) \pm 0.05(D_s)) \times 10^{-3} \nonumber \\ \frac{{\cal B}(B_s^0 \to K^- \mu^+ \nu_\mu)_{high\; q^2}}{{\cal B}(B_s^0 \to K^- \mu^+ \nu_\mu)_{full\; q^2}} = (3.25 \pm 0.21(stat)^{+0.16}_{-0.17}(syst) \pm 0.09(D_s)) \times 10^{-3}
$$

$|V_{ub}|/|V_{cb}|$ from $B^0_{s} \rightarrow K^- \mu^+ \nu_{\mu}$

PhysRevLett.126.081804

• The ratio is determined from the relation $\vert V_{ub}\vert^2/\vert V_{cb}\vert^2 = \mathcal{R}_{\mathcal{B}}\mathcal{R}_{FF}$

where $\mathcal{R}_{\mathcal{B}}$ is the ratio of branching ratios and \mathcal{R}_{FF} the ratio of theoretical decay rates, dependent on form factors, integrated in the appropriate q^2 range.

- For b \rightarrow K two different form factors calculations are used, according to their range of best accuracy, LCSR at low q^2 [PRD 100(2019)034501], LQCD at high q^2 [PRD 100(2019)034501]
- For $b\rightarrow D_s$ LQCD FF is used [PRD 101(2020)074513].

 $|V_{ub}|/|V_{cb}|$ (low q^2) = 0.0607 \pm 0.0015(stat) \pm 0.0013(syst) \pm 0.0008(D_s) \pm 0.0030(FF) $|V_{ub}|/|V_{cb}|$ (high q^2) = 0.0946 \pm 0.0030(stat) $^{+0.0024}_{-0.0025}$ (syst) \pm 0.0013(D_s) \pm 0.0068(FF)

- Contribution to systematic uncertainty from normalization mode is from 2.8% uncertainty on $B(D_s\rightarrow KK\pi)$ and 4% from the D_s FF.
- $B(B_s\rightarrow D_s\mu\nu)$, not used since measured by LHCb with the same data, has a 9.4% uncertainty.

 $B^0_s \rightarrow K^- \mu^+ \nu_\mu$ systematic unc.

TABLE I. Relative systematic uncertainties on the ratio $\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)/\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)$, in percent.

• Systematic uncertainties can be reduced with larger datasets and simulation

B^0_s → K⁻ μ^+v_μ with Run2 data

- New B $^0\!\rm s}$ \to K $^-\mu^+\nu_\mu$ analysis with Run2 data ongoing. Use 2016-18 data at $\sqrt{\rm s}$ =13 TeV.
- Aim at a measurement of $|V_{ub}|$ independent on $|V_{cb}|$.
- Exploits larger data set (~5x) of data to perform a binned measurement of the branching ratio, in $O(10)$ q^2 bins
- The branching ratio is normalized with a well-known decay mode, chosen as $B^ \rightarrow$ J/ $\psi(\mu^+\mu^-)K^-$

$$
\Delta B_i = \frac{N_{sig,i}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig,i}} \frac{f_u}{f_s} B_{norm}
$$

- Signal yields determined from a template fit simultaneous on all q ² bins.
- q ²unfolding to obtain signal yields in true bins

 \mathcal{B}_{norm} , and all the q2 bin and $N_{{\rm sig},i}$ signal yield in the q² bin $\,$ N_{norm} normalization yield in the full q 2 range $\frac{\epsilon_{norm}}{2}$ ratio of efficiencies $\epsilon_{sig,i}$ f_u $f_{\mathcal{S}}$ ratio of B^* to $\,\mathsf{B^0}_\mathrm{s}$ production fractions B_{norm} normalization branching ratio

B^0_s → K⁻ μ^+v_μ Normalization

Chosen normalisation mode is $B^ \rightarrow$ J/ $\psi(\mu^+\mu^-)$ K⁻

- Very clean and large sample
	- small additional statistical uncertainty
- Same number of tracks and similar topology to signal when one muon is neglected.
	- reduced systematic uncertainty on efficiencies ratio
- Ratio of B_s to B^* production fractions precisely measured by LHCb [PRD 104, 032005 (2021)] $f_s/f_d = 0.2539 \pm 0.0079$ at 13 TeV
- External systematic uncertainty from normalization will be slightly smaller than in Run1 measurement
	- 1.9% from ${\cal B}({\sf B}^-\!\!\!\rightarrow\! {\sf J}/\psi(\mu^+\mu^-){\sf K}^-)$, 3.1% from ${\sf f}_{\sf s}/{\sf f}_{\sf u}$

B^0_s → K⁻ μ^+v_μ Background

- Background from physics processes: shape modelled with simulation.
- Main sources are b \rightarrow c decays like $H_b \rightarrow (H_c \rightarrow K^-X)\mu^+\nu_\mu X$ and $H_b \rightarrow c\overline{c}(\mu^+\mu^-)K^-X$ (concentrated in few q^2 bins).
	- Suppressed with multivariate classifier with kinematical and topological variables, trained on simulation.
- Contributions from $B^0_{s} \rightarrow (K^{*-} \rightarrow K^- \pi^0) \mu^+ \nu_\mu$ with K*(892), K*₀(1430), K*₂(1430) with unreconstructed π^0
	- Unmeasured branching fractions
	- Poor knowledge of the expected q^2 shape, additional input would be useful
	- Some separation from signal due to the missing particle
	- Partially suppressed with neutral isolation criteria
- Smaller contributions from random K $^-\mu^+$ combinations and semileptonic decays with misidentified K[−] .
	- Suppressed with multivariate classifier trained on $\mathsf{K}^\pm \mathsf{\mu}^\pm$ data and PID cuts. Shape modelled with data-driven methods.

 B^0_{s} \rightarrow K⁻ μ ⁺ v_{μ} signal fit

- Maximum-likelihood fit in HistFactory framework.
- Simultaneous in $O(10)$ q^2 bins and three data-taking years. Bins optimization not final.

Toy MonteCarlo with signal and two physics background contributions

Prospects on $|V_{ub}|$ and FF determination in $B^0\mathstrut_s\!\!\rightarrow\! K^- \mu^+ \nu_\mu$

- Several FF scheme available to describe signal shape in simulation. Examples:
	- LCSR JHEP 08(2017)112
	- HPQCD 2014 PRD 90(2014)054506
	- RBC/UKQCD PRD 91(2015)074510
	- FNAL/MILC PRD 100(2019)034501
- Average of 3 LQCD results by FLAG21(Feb 23). BCL extrapolation.
- RBC/UKQCD update PRD 107 2023)114512 superseeding their previous results, with BGL.
- Bayesian inference JHEP 12 (2023) 175 with BGL
- LCSR&LQD combination arXiv:2308.04347, with modified BGL
- Baseline FF to be used not defined yet (FLAG24 average?)
	- Could provide results with different options.
	- Dependence of fitted signal yields on FF reduced using high number of bins (small variation of m_{cor} distribution inside the bin).
	- Dependence of signal efficiency per bin on FF to be detrmined.
- Same FF scheme will be used to fit ℬ dq^2 distribution and determine $|V_{ub}|$ via

$$
\frac{dB}{dq^2} = \frac{d\Gamma_{sig}^0}{dq^2} |V_{ub}|^2 \tau_B
$$

$$
B^+ \rightarrow \rho^0(\pi^+\pi^-)\mu^+\nu_\mu
$$

$B^+ \rightarrow \rho^0(\pi^+\pi^-)\mu^+\nu_{\mu}$ Introduction

- Branching ratio measured at BFactories. Large discrepancy between BaBar and Belle measurements.
- Preliminary Belle II measurement consistent with Belle.
- A new, precise measurement from LHCb will help to solve the tension.
- The large sample of LHCb data will allow a precise determination of the differential decay rate and a fit to $|V_{ub}|$
	- 1. arXiv:1005.3288/Phys.Rev.D83, 032007
	- 2. arXiv:1306.2781/Phys.Rev.D88, 032005
	- 3. [arXiv:2407.17403](https://arxiv.org/abs/2407.17403)

B^+ \rightarrow ρ^0 μ^+ ν_{μ} measurement at LHCb

- Goal: measure the differential branching fraction in bins of q^2 and extract the FF
- The ρ^0 decay exclusively via $\rho^0 \, {\bm \to} \pi^+ \pi^-$
- The branching fraction is measured relative to a normalization decay mode chosen as $\overline{\mathrm{B}^+\!\!\rightarrow\!\mathrm{D}^0}\!(\pi^*\pi^-)\mu^+\nu_\mu$

$$
\left(\frac{\Delta B}{\Delta q^2}\right)_i = \frac{N_{sig,i}}{q_{max,i}^2 - q_{min,i}^2} \frac{B_{norm}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig,i}}
$$

 $N_{sig,i}$ signal yield in the q^2 bin N_{norm} normalization yield in the full q 2 range $\frac{\epsilon_{norm}}{\epsilon}$ ratio of efficiencies $\epsilon_{sig,i}$ B_{norm} normalization branching ratio

B^+ \rightarrow $\rho^0(\pi^+\pi^-)\mu^+\nu_\mu$ Normalization

• Normalization mode chosen as $\mathsf{B}^+ \mathbin{\rightarrow} \overline{\mathsf{D}}^0 \mu^+ \mathsf{v}_\mu, \overline{\mathsf{D}}^0 \mathbin{\rightarrow} \pi^+ \pi^-$

 $B({\sf B}^+ \!\!\rightarrow\! \overline{{\sf D}}^0(\pi^+\pi^-) \mu^+\nu_{\mu}^{}\!\!= (3.34\pm0.14)~10^{-5} \;\;\;\;$ with a 4.2% relative uncertainty

- Same set of final state tracks to reduce systematic uncertainty in efficiency ratio
- Main physics backgrounds from B $^+ \to \overline{\rm D}{}^{*0} \mu {}^+ \nu_{\mu}$ and B $^0 \to$ D ${}^* \! \! {}^-\mu {}^+ \nu_{\mu}$ partially reconstructed
- Normalisation yield extracted from a 1D template fit in the full q^2 region.
- Statistical uncertainty from normalization O(3%)

B^+ \rightarrow ρ^0 $(\pi^+\pi^-)\mu^+\nu_\mu$

- $\bullet\,$ Signal yield extracted from a 2D template fit to m $_{\rm cor}$ and m $_{\pi\pi}$ in O(10) non-uniform ${\sf q^2}$ bins (approximate same yields).
	- two pion mass added as additional discriminating variable against background
- Shapes of m_{cor} and $m_{\pi\pi}$ modelled with templates histograms
- Extended maximum likelihood fit in the HistFactory framework
	- Signal simulated with BCL/BSZ FFs [PRD104,034032 (2021)] and $m_{\pi\pi}$ shape reweighted to include ρ - ω interference

B^+ \rightarrow $\rho^0(\pi^+\pi^-)\mu^+\nu_\mu$ Background

- Background from physics processes: modelled with simulation.
	- B+ \rightarrow D $^{0}(\pi^{+}\pi^{-}X^{0})$ $\mu^{+}v_{\mu}$ (X) with X 0 = one or more neutral particles
	- B $^{+,0}\rightarrow$ X $_{\rm u}$ μ $^{+}{\rm v}_{\mu}$ various charmless semileptonic decays
	- B+ $\rightarrow \pi^+ \pi^- \mu^+ \nu_{\mu}$ with non-resonant $\pi^+ \pi^-$ This is the most critical background, having m_{cor} distribution similar to signal and $m_{\pi\pi}$ poorely constrained by external inputs.

 $B^+\rightarrow \pi^+\pi^-\mu^+\nu_\mu$ shapes from DFN/PYTHIA simulation [JHEP 06 (1999) 017] Phase-space simulation

- Combinatorial background: modelled with same-sign data.
- MisID background: modelled with data-driven methods.
- Background rejection mainly from multivariate classifiers with isolation variables, trained on simulation.

$B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ $\Delta \mathcal{B}_i$, $|V_{ub}|$ and FF determination

Analysis still blinded. Prospects:

- Expected statistical sensitivity on branching fraction per q^2 bin $O(5\% 6\%)$, using 2018 data (~ 2fb⁻¹).
	- Systematic uncertainty O(5%-9%), dominated by uncertainty on $m_{\pi\pi}$ shape of the non-resonant component. External systematic uncertainty 4.2%.
- q² unfolding to obtain signal yield in true bins.
- Measurement of $|V_{\sf ub}|$ and FFs from fit to dB/dq², following [PRD 104,034032 (2021)]
- Predictions of the FFs V(q²), A₁(q²) and A₁₂(q²) based on light-cone sum rules (LCSR) calculations valid in $q^2 \lesssim 14 \text{GeV}^2/\text{c}^4$ [PRD 79,013008 (2009)].
- BCL/BSZ parametrisations to extrapolate FFs in the full region [JHEP08,098 (2016)]

Conclusions and outlook

- New measurements of $\sf B^0_s\!\!\rightarrow\! K^-\mu^+\nu_\mu$ and $\sf B^+\!\!\rightarrow\! \rho^0(\pi^+\pi^-)\mu^+\nu_\mu$ decays expected from LHCb, with Run2 data.
- Other b \rightarrow ulv exclusive analysis on Λ_h and B_c decays under study.
- Run3 data-taking (~9 fb⁻¹ expected this year) will provide more data and open the path to improved analyses.
- Input from theory crucial for $|V_{ub}|$ determination.