Inclusive semileptonic decays from Lattice QCD

Ryan Kellermann

In collaboration with Alessandro Barone, Ahmed Elgaziari, Shoji Hashimoto, Zhi Hu, Andreas Jüttner, Takashi Kaneko

High Energy Accelerator Research Organization (KEK)

Challenges in Semileptonic B Decays, September 25th, 2024

Today's agenda

- Quick review on lattice formulation of inclusive decays
- Systematic errors in the analysis
 - 1. Finite-volume effects
 - 2. Finite polynomial approximation
- Extension to more observables
- Summary & Outlook

Introduction

Current landscape

 $\sim 3\sigma$ discrepancy between exclusive and inclusive determination

Many determinations for exclusive channels from lattice QCD and Experiment

Inclusive determination has relied on OPE

• Lattice QCD might be able to provide input

enables fully nonperturbative theoretical treatment of QCD

Current status on the analyis of inclusive decays of charmed and bottomed mesons from lattice QCD

09/25/24

Today:

 $\frac{d\Gamma}{dq^2 dq_0^2 dE_l} = \frac{G_F^2 |V_{cs}|^2}{8\pi^2} L_{\mu\nu} W^{\mu\nu}$ $L_{\mu\nu}: \text{ Leptonic tensor (analytically known)}$ $W^{\mu\nu}: \text{ Hadronic tensor (nonperturbative QCD)}$

Challenges on the lattice

- Require external states
 - Long time separations

4pt correlator $C_{\mu\nu}(t) \sim \langle D_s(\mathbf{0}) | \tilde{J}^{\dagger}_{\mu}(\mathbf{q}) \tilde{J}_{\nu}(\mathbf{q}) | D_s(\mathbf{0}) \rangle$

$$\frac{d\Gamma}{dq^2 dq_0^2 dE_l} = \frac{G_F^2 |V_{cs}|^2}{8\pi^2} L_{\mu\nu} W^{\mu\nu}$$

 $_{\nu}$: Leptonic tensor (analytically known)
 $_{\mu\nu}$: Hadronic tensor (nonperturbative QCD

Challenges on the lattice

- Require external states
 - Long time separations
- Large number of states
 - Identify all of them?

$$C_{\mu\nu}(t) \sim \sum_{X_s} \langle D_s | \tilde{J}^{\dagger}_{\mu}(\boldsymbol{q}) | X_s \rangle \langle X_s | \tilde{J}_{\nu}(\boldsymbol{q}) | D_s \rangle e^{-E_{X_s} t}$$

Challenges on the lattice

- Require external states
 - Long time separations
- Large number of states
 Identify all of them?
- Extraction of $W_{\mu\nu}$ from correlator ill-posed problem (**inverse problem**)

Idea [P. Gambino & S. Hashimoto, 2005.13730]

Challenges in semileptonic B Decays, R. Kellermann

9

Inclusive Decays - Continuum

Total decay rate [2211.16830, 2305.14092]

$$\Gamma \sim \int_0^{\boldsymbol{q}_{max}^2} d\boldsymbol{q}^2 \sqrt{\boldsymbol{q}^2} \sum_{l=0}^2 \bar{X}^{(l)}(\boldsymbol{q}^2)$$

 $\overline{X}^{(l)}(\boldsymbol{q}^2)$ integral over energy of hadronic final states

$$\bar{X}^{(l)}(\boldsymbol{q}^2) = \int_{\omega_0}^{\infty} d\omega \ W^{\mu\nu}(\boldsymbol{q},\omega) K^{(l)}_{\mu\nu}(\boldsymbol{q},\omega) \\ k^{(l)}_{\mu\nu}(\boldsymbol{q},\omega) \theta(\omega_{\max} - \omega) \\ \text{Analytically known Step function} \\ l\text{-th power of } \omega \text{ and } \boldsymbol{q}^2$$

Inclusive decays – Lattice

- t_{src}, t_2, t_{snk} fixed $t = t_2 t_1$
- $t_{src} \leq t_1 \leq t_2$

$$C_{\mu\nu}(\boldsymbol{q},t) = \int_0^\infty d\omega \, W_{\mu\nu}(\boldsymbol{q},\omega) \, e^{-\omega t}$$

Inclusive decays – Lattice

•
$$t_{src}, t_2, t_{snk}$$
 fixed • $t = t_2 - t_1$

•
$$t_{src} \leq t_1 \leq t_2$$

$$C_{\mu\nu}(\boldsymbol{q},t) = \int_0^\infty d\omega \ W_{\mu\nu}(\boldsymbol{q},\omega) \ e^{-\omega t}$$

Continuum expression

$$\bar{X}^{(l)}(\boldsymbol{q}^2) = \int_{\omega_0}^{\infty} d\omega \ W^{\mu\nu}(\boldsymbol{q},\omega) K^{(l)}_{\mu\nu}(\boldsymbol{q},\omega) \qquad \text{Approximate Kernel in polynomials of } e^{-\omega}$$

$$K(\omega,\boldsymbol{q}) \simeq k_0 + k_1 e^{-\omega} + \dots + k_N e^{-N\omega}$$

$$\bar{X}^{(l)}(\boldsymbol{q}^2) \sim k_0 \int_{\omega_0}^{\infty} d\omega \ W^{\mu\nu}(\boldsymbol{q},\omega) + \dots + k_N \int_{\omega_0}^{\infty} d\omega \ W^{\mu\nu}(\boldsymbol{q},\omega) e^{-N\omega}$$

Challenges in semileptonic B Decays, R. Kellermann

Numerical Results

Systematic error – kernel approximation

Upper limit of the energy integral

Challenges in semileptonic B Decays, R. Kellermann

Systematic error - Approximation $N = 10, \sigma = 0.1$ Create estimate [2211.16830]

• $N \rightarrow \infty$; frequency component

1.2

Systematic error - Approximation

Application for $\overline{X}_{VV}^{\parallel}(\boldsymbol{q}^2)$ for $\boldsymbol{q}=(1,1,1)$

Infinite volume limit? [2312.16442]

In finite volume spectral density is a sum of delta peaks

Computing $\overline{X}_{\sigma}(\boldsymbol{q}^2)$ requires ordered

 $\lim_{\sigma \to 0} \lim_{V \to \infty} \bar{X}_{\sigma}(\boldsymbol{q}^2)$

Necessary data not available

Estimate finite-volume effects using a model (non-interacting two-body states)

Finite volume – Model analysis

 $\overline{X}_{AA}^{\parallel}(\boldsymbol{q}^2)$ for $\boldsymbol{q}=(0,0,0)$ Model-based results

$$\bar{X}^{(l)}(\omega_{\rm th}) \sim \int_{\omega_0}^{\infty} d\omega \,\rho(\omega) k_{\sigma}^{(l)}(\boldsymbol{q},\omega) \theta(\omega_{\rm th}-\omega)$$

Test by (artificially) varying the upper limit of the integral

- Heaviside function
 - Slight volume dependence

Finite volume – Model analysis

 $\overline{X}_{AA}^{\parallel}(\boldsymbol{q}^2)$ for $\boldsymbol{q}=(0,0,0)$ Model-based results

$$\bar{X}^{(l)}(\omega_{\rm th}) \sim \int_{\omega_0}^{\infty} d\omega \,\rho(\omega) k_{\sigma}^{(l)}(\boldsymbol{q},\omega) \theta(\omega_{\rm th}-\omega)$$

Test by (artificially) varying the upper limit of the integral

- Heaviside function
 - Slight volume dependence
- + apply smearing
 - Volume dependence washes out

Finite volume – Model analysis

 $\overline{X}_{AA}^{\parallel}(\boldsymbol{q}^2)$ for $\boldsymbol{q}=(0,0,0)$ Model-based results

$$\bar{X}^{(l)}(\omega_{\rm th}) \sim \int_{\omega_0}^{\infty} d\omega \,\rho(\omega) k_{\sigma}^{(l)}(\boldsymbol{q},\omega) \theta(\omega_{\rm th}-\omega)$$

Test by (artificially) varying the upper limit of the integral

- Heaviside function
 - Slight volume dependence
- + apply smearing
 - Volume dependence washes out
- + include lattice data
 - Nicely follows model prediction

Estimating the systematic corrections

Channels:

- 1. AA: infinite-volume limit
- 2. VV: finite-volume corrections expected small; only $\sigma \rightarrow 0$ limit
- + subtr. Ground state from correlator and assume as exact

Future Prospects

Extension: Moments [in collaboration with Matteo Fael]

Consider other observables; q^2 kinematical moments

$$Q_n(q_{\text{cut}}^2) = \int_{q_{\text{cut}}^2}^{q_{\text{max}}^2} (q^2)^n \left[\frac{d\Gamma}{dq^2 dq_0 dE_\ell} \right] dq^2 dq_0 dE_\ell$$

Or: centralized moments $q_n(q_{cut}^2)$ of differential distributions

- Higher sensitivity to power corrections
- Independent of CKM elements

$$\begin{aligned} q_1(q_{\text{cut}}^2) &= \langle q^2 \rangle_{q^2 \ge q_{\text{cut}}^2}, & n = 1 \\ q_n(q_{\text{cut}}^2) &= \langle (q^2 - \langle q^2 \rangle)^n \rangle_{q^2 \ge q_{\text{cut}}^2}, & n \ge 2 \end{aligned} \qquad \begin{aligned} n &= 1 \\ \langle (q^2)^n \rangle_{q^2 \ge q_{\text{cut}}^2} &= \frac{Q_n}{Q_0} \end{aligned}$$

Moments – Lattice and Continuum

Adjust analysis of the decay rate

$$Q_n(q_{\text{cut}}^2) = \int_{\boldsymbol{q}_{\text{cut}}}^{\boldsymbol{q}_{\text{max}}} d\boldsymbol{q}^2 \sqrt{\boldsymbol{q}^2} \, \bar{X}_{Q_n}(\boldsymbol{q}^2) \quad \bar{X}_{Q_n}(\boldsymbol{q}^2) = \int_{\omega_{\min}}^{\omega_{\max}} d\omega \, k_{Q_n,\mu\nu} \times W^{\mu\nu}$$

Rescale charm mass in continumm prediction to match lattice data

Challenges in semileptonic B Decays, R. Kellermann

Moments – Lattice and Continuum

Increasing disagreement for higher n between RPI/PERP and lattice

Note: better agreement is expected on the tails; Small $q_{\text{cut}}^2 \cong \text{large } q^2 \to \text{larger cut-off effects}$

Centralized Moments – Lattice and Continuum

Feasibility study

After extrapolation to the physical world: Lattice data can be used to extract HQET parameters for the OPE

Summary & Outlook

Summary

- Study into systematic effects in the inclusive analysis of semileptonic decays on the lattice
 - \odot Error from Chebyshev polynomial approximation
 - Obtained a better estimate following the first idea
 - \odot Finite volume corrections
 - Work out further details; supplement with data
- Publication in work (hopefully this year)

Outlook

- Discretization effects & continuum limit need to be addressed
- Extend towards a full analysis in the bottom sector
- Extend to different observables, e.g. moments
 - Increase pool for comparison to experiment and continuum theory predictions, e.g. OPE
- P-wave form factors from inclusive lattice simulation

Systematic errors - Approximation $q^2 = 0.66 \text{ GeV}^2$ $\omega_0 = 0.9 \omega_{\min}$,

Coefficients for kernel with l = 0

Simulations conducted on Fugaku using Grid [P. Boyle et al., https://github.com/Grid] and Hadrons [A. Portelli et al., https://github.com/aportelli/Hadrons] software packages

Lattice setup:

- Lattice size: $48^3 \times 96$
- Lattice Spacing: a = 0.055 fm
- $M_{\pi} \simeq 300 \text{ MeV}$

Simulation:

- 2+1 Möbius domain-wall fermions
- *s*, *c* quarks simulated at near-physical values
- Cover whole kinematical region $\boldsymbol{q} = (0,0,0) \rightarrow (1,1,1)$