Discussion on V_{ub}

Lu Cao & Alexander Khodjamirian

Workshop "Challenges in Semileptonic Decays", Vienna, 26.09.2024

• $B \rightarrow \pi \ell \nu_{\ell}, B_s \rightarrow K \ell \nu_{\ell}$, Fermilab-MILC new results coming soon [talk by Andreas Kronfeld]

- do we expect new results from other lattice QCD collaborations ?
- are the $B^*\pi$ states in the lattice $B \to \pi$ form factors important ? [O.Bär, A. Broll, R. Sommer, Lattice '22]
- an important test of the theory: the *q*²-shape of a form factor do the shapes of the calculated *B* → π form factors agree? can we expect more *q*²-bins from experiment for this test?

• useful quantity for V_{ub} : the width integrated over small/intermediate q^2 (vs LCSR) or over large q^2 (vs LQCD) (independent of shape and/or *z*-parameterization)

• LCSRs results for $B \to \pi$ and $B_s \to K$ form factors, not always agree with lattice QCD results. should we fit them together ? e.g., for $B_s \to K$ in [C.Bolognani ,D.van Dyk,K.Vos 2308.04347]

・ロト ・ 四ト ・ ヨト ・ ヨト

V_{ub} , exclusive determination

- V_{ub} from $B \rightarrow \rho \ell \nu_{\ell}$, $B \rightarrow \omega \ell \nu_{\ell}$ lower than from $B \rightarrow \pi \ell \nu$ by $\sim 2\sigma$ [talk by Florian Bernlochner and refs therein]
- relying mainly on LCSR $B \rightarrow \rho, \omega$ form factors

[Bharucha, D. M. Straub, and R. Zwicky, 1503.05534], an update [B.Melic, Yu-M.Wang et al.] in progress

but: the form factors are calculated for narrow ho,ω

• we should start from general $B \to 2\pi$ form factors in $B \to \pi \pi \ell \nu_{\ell}$ expanded in partial waves and invariant mass of di-pion state

with correspondingly detailed data from Belle II

 we should agree on a uniform procedure of what is ρ and what is "nonresonant" background,

[talks by Florian Herren and Raynette Van Tonder]

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・

- the role of ρ', ρ" (radially excited states) important up to 15 % effect, see LCSRs with B-DAs: [S.Cheng, AK, J.Virto, 1701.01633]
- $\bar{B}^0 \to \pi^+ \pi^0 \ell \bar{\nu}_\ell$ somewhat simpler than $\bar{B}^0 \to \pi^+ \pi^- \ell \bar{\nu}_\ell$ (f₀ states!)
- any perspectives from lattice QCD ?

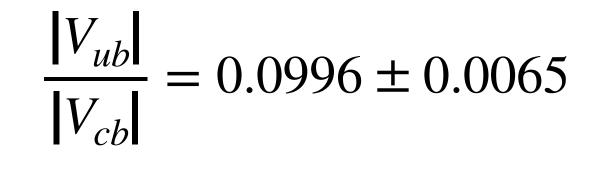
Discussion points

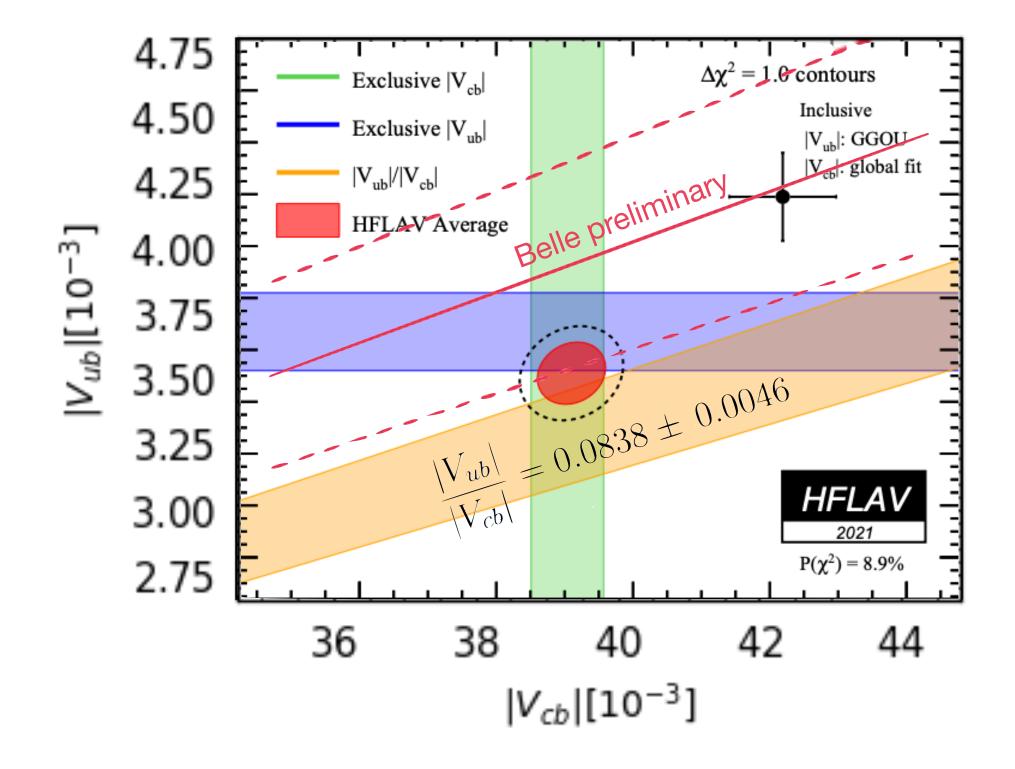
- Advanced inclusive $B \to X_{\mu} \ell \nu$ modelling and generator
 - Important for exclusive and inclusive $b \rightarrow u \ell \nu$ and leptonic B measurements
 - Short-term solutions (reweighting), long-term solution (EvtGen)
 - Better hybrid? cocktail inclusive DFN+BLNP, including interference of $N\pi$
- Common tool/recipe for D**, gap modelings

and illustrated in Fig. 64(a). The total error is $^{+3.9}_{-3.9}\%$ whose breakdown is: statistics ($^{+1.3}_{-1.3}\%$), detector effects $\binom{+1.6}{-1.6}$, $B \to X_c \ell^+ \nu_\ell$ model $\binom{+0.9}{-0.9}$, $B \to X_u \ell^+ \nu_\ell$ model $\binom{+1.7}{-1.7}$, α_s , m_b and other non-perturbative parameters $\binom{+1.8}{-1.8}$, higher order perturbative and non-perturbative corrections $\binom{+1.5}{-1.5}$, modelling of the q^2 tail $\binom{+1.3}{-1.3}$, weak annihilations matrix element $\binom{+0.0}{-1.1}$, functional form of the distribution functions $\binom{+0.1}{-0.1}$. The leading uncertainties on $|V_{ub}|$ are both from theory, and are due to perturbative and non-perturbative parameters and the modelling of the q^2 tail. The uncertainty due to weak annihilation has been assumed to be asymmetric, *i.e.* it only tends to decrease $|V_{ub}|$.

- $|V_{ub}|$ tensions among exclusive modes, π, ρ, ω
- $|V_{ub}|/|V_{cb}|$ tensions

Estimated uncertainty in $|V_{ub}|$ due to weak annihilation: HFLAV2021 (arxiv:2206.07501)

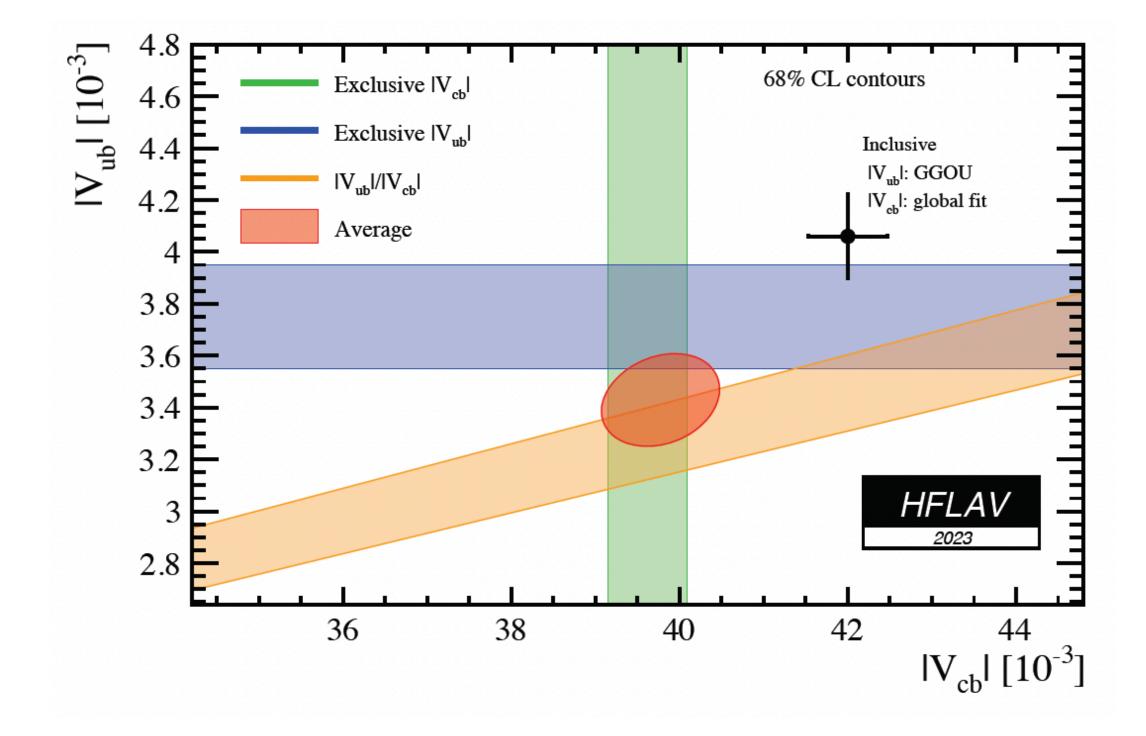

(?) only negative and varied in different frameworks, e.g. $^{+0.0\%}_{-0.7\%}$ in **BLNP**



Ratio Measurements of V_{ub} / V_{cb}

Ratio of **inclusive** decays from Belle [arxiv:2311.00458]:

GGOU, $\pm 4.2\%_{\text{stat}} \pm 3.9\%_{\text{syst}} \pm 2.3\%_{\Delta\Gamma(\overline{B}\to X_u\ell\overline{\nu})} \pm 2.0\%_{\Delta\Gamma(\overline{B}\to X_c\ell\overline{\nu})}$



Ratio of **exclusive** decays from LHCb:

Average from $\Lambda_b^0 \rightarrow p\mu\nu$ and $B_s^0 \rightarrow K\mu\nu$ (high q²) [HFLAV2023, preliminary]

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.0823 \pm 0.0035$$

2