Inclusive $B \rightarrow X_{\mu} \ell \nu$ measurements at Belle (II)

Lu Cao

for the Belle & Belle II Collaborations

26 September 2024, Vienna

- $\Delta \mathscr{B}(B \to X_{\mu} \mathscr{C} \nu)$ and $|V_{ub}|_{[PRD 104, 012008 (2021)]}$
- $d\mathscr{B}/dx, x = M_X, M_X^2, q^2, P^{\pm}, E_I^B$ [PRL 127, 261801 (2021)]
- Simultaneous determination of excl. & incl. |Vub [PRL 131, 211801 (2023)] \bullet
- $\Delta \mathscr{B}$ ratio and incl. $|V_{ub}|/|V_{cb}|$ [arXiv: 2311.00458] \bullet

Run1 data: 364fb⁻¹, ongoing

• $\Delta \mathscr{B}(B \to X_{\mu} \ell \nu)$ and $|V_{ub}|$ [PRD 104, 012008 (2021)]

presented in the last workshop@Barolo

- $d\mathscr{B}/dx, x = M_X, M_X^2, q^2, P^{\pm}, E_l^B$ [PRL 127, 261801 (2021)]
- Simultaneous determination of excl. & incl. |Vub [PRL 131, 211801 (2023)] \bullet
- $\Delta \mathscr{B}$ ratio and incl. $|V_{ub}|/|V_{cb}|$ [arXiv: 2311.00458]

Run1 data: 364fb⁻¹, ongoing

- $\Delta \mathscr{B}(B \to X_{u} \mathscr{C} \nu)$ and $|V_{ub}|$ [PRD 104, 012008 (2021)]
- $d\mathscr{B}/dx, x = M_X, M_X^2, q^2, P^{\pm}, E_l^B$ [PRL 127, 261801 (2021)]
- Simultaneous determination of excl. & incl. |Vub [PRL 131, 211801 (2023)]
- $\Delta \mathscr{B}$ ratio and incl. $|V_{ub}|/|V_{cb}|$ [arXiv: 2311.00458]

Run1 data: 364fb⁻¹, ongoing

- $\Delta \mathscr{B}(B \to X_u \mathscr{C} \nu)$ and $|V_{ub}|$
- $d\mathscr{B}/dx, x = x_{\text{Belle}} + \cos\theta_{\ell}$
- Weak annihilation in $B \to X_{\mu} \ell \nu$

- $\Delta \mathscr{B}(B \to X_u \mathscr{C} \nu)$ and $|V_{ub}|_{[PRD 104, 012008 (2021)]}$
- $d\mathscr{B}/dx, x = M_X, M_X^2, q^2, P^{\pm}, E_l^B$ [PRL 127, 261801 (2021)]
- Simultaneous determination of excl. & incl. |Vub [PRL 131, 211801 (2023)]
- $\Delta \mathscr{B}$ ratio and incl. $|V_{ub}|/|V_{cb}|$ [arXiv: 2311.00458]

Run1 data: 364fb⁻¹, ongoing

- $\Delta \mathscr{B}(B \to X_u \ell \nu)$ and $|V_{ub}|$
- $d\mathscr{B}/dx, x = x_{\text{Belle}} + \cos\theta_{\ell}$
- Weak annihilation in $B \to X_{\mu} \ell \nu$

Analysis team:

Tommy Martinov, Marcel Hohmann, Munira Khan, Merle Graf-Schreiber, Martin Angelsmark, LC, Florian Bernlochner, Kerstin Tackmann

$\Delta \mathscr{B}(B \to X_u \ell \nu) \text{ and } |V_{ub}|$

Reconstruct Inclusive Semileptonic B Decays with Fully Known Btag

Allows to reconstruct inclusive X

• Leptonic system:

Reconstruct Inclusive Semileptonic B Decays with Fully Known B_{tag}

Challenge 1:

- •Tagging efficiency $\epsilon \approx \mathcal{O}(0.1\%)$
- Large background for low momentum leptons: misidentified or secondary SL decays => E_{ρ}^{B} > 0.8 GeV or $> 3 \text{ GeV}^2$

Allows to reconstruct inclusive X

• Leptonic system:

Challenge 2:

• High background from $B \to X_c \ell \nu$

Train a binary classification BDT (eXtreme Gradient Boosting) with with 11 feature variables, e.g. N_{K} , vertex, missing mass, etc.

Selection	$B \!\rightarrow\! X_u \ell^+ \nu_\ell \ (\%)$	$B \to X_c \ell^+ \nu_\ell \ (\%)$	Data (%)
$M_{\rm bc} > 5.27 {\rm GeV}$	84.8	83.8	80.2
$\mathcal{O}_{\rm BDT} > 0.85$	18.5	1.3	1.6
$\mathcal{O}_{\mathrm{BDT}} > 0.83$	21.9	1.7	2.1
$\mathcal{O}_{\mathrm{BDT}} > 0.87$	14.5	0.9	1.1

** Tagging efficiency is excluded

Challenge 2:

• High background from $B \to X_c \ell \nu$

ion	Additional selection (GeV)	Fit variable(s)	$\hat{\pmb{\eta}}_{ ext{sig}}$
		M_X fit	$1558\pm69\pm71$
	$M_X < 1.7$	E^{B}_{ℓ} fit	$1285\pm68\pm139$
	$M_X < 1.7$	q^2 fit	$938\pm99\pm100$
	$M_X < 1.7$	E^{B}_{ℓ} fit	$1303\pm69\pm138$
		M_X : q^2 fit	$1801\pm81\pm123$

Challenge 2:

• High background from $B \to X_c \ell \nu$

ion	Additional selection (GeV)	Fit variable(s)	$\hat{\eta}_{ ext{sig}}$
,		M_X fit	$1558\pm69\pm71$
,	$M_X < 1.7$	E^B_{ℓ} fit	$1285\pm68\pm139$
,	$M_X < 1.7$	q^2 fit	$938\pm99\pm100$
	$M_X < 1.7$	E^B_ℓ fit	$1303\pm69\pm138$
		M_X : q^2 fit	$1801\pm81\pm123$
		$N_{bkg} = $	7031 ± 164

- Better tagging performance with **FEI** (~1.5 times higher eff.)
- Further improvements form DNN (Tensorflow) to suppress backgrounds

Belle II @364 fb⁻¹, estimated yields after all selections in MC:

 $N_{sig} = 1817, N_{bkg} = 4343$

Challenge 2:

• High background from $B \to X_c \ell \nu$

_	Additional			Phase space cuts	Accepta
ion	selection (GeV)	Fit variable(s)	$\hat{\eta}_{ ext{sig}}$	$p_{\ell}^B > 1.0 \text{ GeV}$	86
		M_X fit	$1558 \pm 69 \pm 71$	$p_{\ell}^B > 1.0 \text{ GeV}$	56
	$M_X < 1.7$	E^B_ℓ fit	$1285\pm68\pm139$	$M_X < 1.7 { m ~GeV}$	
		0		$p_{\ell}^B > 1.0 { m ~GeV}$	
	$M_X < 1.7$	q^2 fit	$938 \pm 99 \pm 100$	$M_X < 1.7 { m ~GeV}$	31
				$q^2 > 8 { m ~GeV^2}$	
	$M_X < 1.7$	E^B_ℓ fit	$1303\pm69\pm138$	$p_{\ell}^B > 2.1 ~{ m GeV}$	19
		M_X : q^2 fit	$1801\pm81\pm123$		I

Partial region focus on the lepton endpoint will be also measured

Challenge 3:

Poorly modelled gap modes and charm multi-body decays

	Decay	$\mathscr{B}(B^+)$	$\mathscr{B}(B^0)$
אם ח*	$B \rightarrow D\ell^+ \nu_\ell$	$(2.35 \pm 0.06) \cdot 10^{-2}$	$(2.18 \pm 0.06) \cdot 10^{-2}$
D,D	$B \to D^* \ell^+ \nu_\ell$	$(5.41 \pm 0.11) \cdot 10^{-2}$	$(5.03 \pm 0.11) \cdot 10^{-2}$
	$B \to D_1 \ell^+ \nu_\ell$	$(6.5 \pm 1.1) \cdot 10^{-3}$	$(6.1 \pm 1.0) \cdot 10^{-3}$
D**	$B \to D_0^* \ell^+ \nu_\ell$	$(4.2 \pm 0.8) \cdot 10^{-3}$	$(3.9 \pm 0.7) \cdot 10^{-3}$
	$B \to D_1' \ell^+ \nu_\ell$	$(2.9 \pm 0.8) \cdot 10^{-3}$	$(2.6 \pm 0.7) \cdot 10^{-3}$
	$B \to D_2^* \ell^+ \nu_\ell$	$(2.9 \pm 0.3) \cdot 10^{-3}$	$(2.7 \pm 0.3) \cdot 10^{-3}$
	$B \rightarrow D\pi \pi \ell^+ \nu_\ell$	$(0.7 \pm 0.9) \cdot 10^{-3}$	$(0.6 \pm 0.8) \cdot 10^{-3}$
Non-res	$B \to D^* \pi \pi \ell^+ \nu_\ell$	$(2.2 \pm 1.0) \cdot 10^{-3}$	$(2.0 \pm 1.0) \cdot 10^{-3}$
11011103.	$B \to D_s K \ell^+ \nu_\ell$	$(0.30 \pm 0.13) \cdot 10^{-3}$	-
	$B \to D_s^* K \ell^+ \nu_\ell$	$(0.29 \pm 0.19) \cdot 10^{-3}$	-
Gap	$B \rightarrow D\eta \ell^+ \nu_\ell$	$(6.5 \pm 6.5) \cdot 10^{-3}$	$(6.3 \pm 6.3) \cdot 10^{-3}$
	$B \to D^* \eta \ell^+ \nu_\ell$	$(6.5 \pm 6.5) \cdot 10^{-3}$	$(6.3 \pm 6.3) \cdot 10^{-3}$
	$B \to X_c \ell^+ \nu_\ell$	$(11.04 \pm 0.17) \cdot 10^{-2}$	$(10.26 \pm 0.16) \cdot 10^{-2}$

** Averages are taken from HFLAV2021

Challenge 3:

Poorly modelled gap modes and charm multi-body decays

Data-driven correction based on $B \rightarrow X_c \ell \nu$ enriched sideband

- Exclude N_{K} from MVA training
- Split data into $N_{K} = 0$ for signal extraction and $N_{K} > 0$ for crossextrapolate $B \rightarrow X_c \ell \nu$ normalisations

Challenge 3:

Poorly modelled gap modes and charm multi-body decays

Data-driven correction based on $B \rightarrow X_c \ell \nu$ enriched sideband

- Exclude N_{K} from MVA training
- Split data into $N_{K} = 0$ for signal extraction and $N_{K} > 0$ for crossextrapolate $B \rightarrow X_c \ell \nu$ normalisations
- Further split into 3 regions based MVA scores, and 3 fit templates in each region
- Simultaneous fit control region (CR) and signal region (SR), the high statistics of $B \to X_c \ell \nu$ in CR push the shape corrections to SR
- All systematics included as source-wise nuisances parameters and shared in CR & SR
- Validation region (VR) is used as pseudo-SR for checking the method

$\Delta \mathscr{B}(B \to X_u \mathscr{C} \nu)$ and inclusive V_{ub}

Challenge 4:

Seeking advanced signal modelling

Challenge 4: Seeking advanced signal modelling

DFN was used as nominal for inclusive contribution at Belle.

At **Belle II**, initially planned to switch to BLNP, but noticed two issues.

Challenge 4: Seeking advanced signal modelling

DFN was used as nominal for inclusive contribution at Belle.

At **Belle II**, initially planned to switch to BLNP, but noticed two issues.

• More peaking M_X when take HQE para. from HFLAV21 as input

m₀ (SF)	m
4.582	
4.61	
Lambda (KN)	lam
0.621	
0.588	
	mь (SF) 4.582 4.61 Lambda (KN) 0.621 0.588

Challenge 4: Seeking advanced signal modelling

DFN was used as nominal for inclusive contribution at Belle. At **Belle II**, initially planned to switch to BLNP, but noticed two issues.

• More peaking M_X when take HQE para. from HFLAV21 as input

 Unphysical correlation pattern shown on kinematic variables (para. independent)

Compromise solution: theorists suggest to stay with DFN or glue DFN to BLNP for this problematic phasespace region

Hybrid recipe for combining excl. & incl.

- Inherit same analysis strategy in the partial BF measurement [PRD 104, 012008 (2021)]
- Additionally select $|E_{miss} P_{miss}| < 0.1 \text{ GeV}$ (not for E_{ℓ}^{B}) to improve resolution \bullet

PRL 127, 261801 (2021)

https://www.hepdata.net/ record/ins1895149

Agreement between data and simulations:

$\overline{\chi^2}$	E^B_ℓ	M_X	M_X^2	q^2	P_+	<i>P</i> _
n.d.f.	16	8	5	12	9	10
Hybrid	13.5	2.5	2.6	4.5	1.7	5.2
DFN	16.2	63.2	13.1	18.5	29.3	6.1
BLNP	16.5	61.0	6.3	20.6	23.6	13.'

Need theorists' great help to constrain/ improve the simulations with the observations [long-term solution for Challenge 4]

Challenge 5:

Resolution of kinematic variables

In the Belle study, applying $U_{miss} = |E_{miss} - P_{miss}| < 0.1 \text{ GeV}$ improves resolution by **21%~37%**, but looses 55% signals

All

Challenge 5:

Resolution of kinematic variables

In the Belle study, applying $U_{miss} = |E_{miss} - P_{miss}| < 0.1 \text{ GeV}$ improves resolution by **21%~37%**, but looses 55% signals

All

Belle Simulation

ed		- / -								70
tract	- 0.3	0.4	0.8	1.4	4.7	40.5	33.8	7.8 -	-	60
suoce	- 0.3	0.4	1.6	6.1	43.2	33.5	12.2	3.4 -	-	50
x of re	- 0.7	1.3	6.9	47.1	33.5	11.7	5.2	0.9 -		40
2 rinde	- 1.3	6.3	47.9	30.9	12.0	3.7	1.7	0.4 -		30
I B	- 9.4	56.5	33.2	10.4	3.2	1.4	0.3	0.2 -		10
0	-87.8	34.8	9.0	2.7	1.0	0.6	0.3	0.2 -		
	0	1	2 Bin	3 index	4 of tru	5 e q ²	6	7		

$|\mathbf{E}_{\text{miss}} - \mathbf{P}_{\text{miss}}| < 0.1$

Belle Simulation

				maic		l			
	7	- 0.0	0.3	0.5	1.3	1.3	4.5	10.7	87.4-
$ q^2$	6	- 0.2	0.2	0.1	0.6	2.1	9.7	64.4	10.3-
acteo	5	- 0.1	0.7	1.1	2.1	6.3	63.6	21.2	1.5 -
constr	4	- 0.1	0.6	1.6	8.7	68.0	19.4	2.7	0.7 -
of rec	3	- 0.2	1.7	10.0	69.1	19.7	2.2	0.8	0.1 -
index	2	- 0.8	8.4	71.9	17.0	2.4	0.6	0.2	0.0 -
Bin	1	- 7.7	77.8	14.5	1.1	0.2	0.0	0.0	0.0 -
	0	-90.8	10.5	0.4	0.1	0.0	0.0	0.0	0.0 -
		0	1	2	3	4	5	6	7
				Bin i	index	of tru	e q^2		

 q^2

Challenge 5:

Resolution of kinematic variables

In the Belle study, applying U_{miss} = |E_{miss} - P_{miss}| < 0.1 GeV improves resolution by **21%~37%**, but looses 55% signals

At **Belle II**, apply the **kinematic fit** strategy as developed for measuring the q² moments of $B \rightarrow X_{c} \ell \nu$ [PRD 107, 072002 (2023)] reject events of failed fitting ~100% efficiency.

lepton and B in the rest frame of W) can be measured => extract forward-backward asymmetry

In addition to Belle's $d\mathscr{B}/dx$, $x = M_X, M_X^2, q^2, P^{\pm}, E_l^B$, angular variable $\cos\theta_{\ell}$ (the angle between

Another option of unfolding:

OmniFold, unbinned & multi-dimensional unfolding based on ML [PRL 124, 182001 (2020)]

One of the recent applications is "A simultaneous unbinned differential cross section measurement of twenty-four Z+jets kinematic observables with the ATLAS detector" [arXiv:2405.20041]

If this can be applied for $B \to X_u \ell \nu$, users will obtain **multi-variable differential** spectra with user-chosen bindings of user-chosen variables, and all moments with user-chosen thresholds of user-chosen variable => all you need at once

Another option of unfolding:

OmniFold, unbinned & multi-dimensional unfolding based on ML [PRL 124, 182001 (2020)]

(more sophisticated studies are planned)

Another option of unfolding:

OmniFold, unbinned & multi-dimensional unfolding based on ML [PRL 124, 182001 (2020)]

(more sophisticated studies are planned)

- Consider this new method for future 2 ab⁻¹@Belle II

Weak Annihilation Contribution in $B \rightarrow X_u \ell \nu$

Searching for Weak Annihilation in $B \rightarrow X_{\mu} \ell \nu$

- Aim for a new direct measurement and separate B⁺ a

$$B \to X_u W^*$$
$$| \qquad \downarrow \ell \nu$$
$$\downarrow \geq 2\pi$$

(PHSP) (SLN)(PYTHIA)

Soft hadronic Xu: $M = 420^{+140}_{-130}$ MeV, $\Gamma = 280 \pm 140 \text{ MeV}$

Simulate WA mo scanning various

• Last direct measurement is from CLEO@15.5 fb⁻¹ [PRL 96, 121801 (2006)] with untagged: $\Gamma_{WA}/\Gamma_{b \to \mu} < 7.4\%$ at 90% CL

and B ^o from Belle II	Injected WA Model		
	$M^2_{\ell\overline{\nu}} \; [{ m GeV^2}]$	$\Gamma_{\ell\overline{\nu}}$ [GeV]	
	19.94	0.02	
	19.94	0.14	
dels embodied $B \rightarrow X_{\nu} \ell \nu$ decays	19.94	0.52	
\mathcal{U}	22.11	0.02	
s masses and widths of W	22.11	0.14	
	22.11	0.52	
	24.28	0.02	
	24.28	0.14	

0.52

24.28

Searching for Weak Annihilation in $B \rightarrow X_{\mu} \ell \nu$

• Fit q² with various WA models embodied $B \to X_u \ell \nu$ decays to extract the normalised signal strength μ_{WA} ($\mu_{WA} = 1$ for 1% of $\Gamma_{b \to u}$)

Searching for Weak Annihilation in $B \rightarrow X_{\mu} \ell \nu$

- Inject a WA model (e.g. m=4.7 GeV, Γ =0.141 GeV) with signal strength (1,1) to form a **pseudo data**
- Fit with various WA configurations (expected limit if no WA)

• Fit q² with various WA models embodied $B \to X_{\mu} \ell \nu$ decays to extract the normalised signal strength μ_{WA} (μ_{WA} = 1 for 1% of $\Gamma_{b \to \mu}$)

Simultaneous determination of excl. & incl. |Vub|

First Simultaneous Determination of Incl. & Excl. Vub

- Extract signal in q^2 : $N_{\pi^{\pm}}$ for $B \to \pi \ell \nu$ and $B \to X_{\mu} \ell \nu$ simultaneously ullet
- \bullet

$$-2 \log \mathcal{L} = -2 \log \prod_{i} \operatorname{Poisson} \left(\eta_{obs}, \eta_{pred} \cdot (1 + \epsilon \cdot \theta) \right) + \theta \rho_{\theta}^{-1} \theta^{T} + \chi_{FF}^{2}$$
Constraints on BCL parameters, input taken f
LQCD / LQCD+exp fits in FLAG 2021

Differential decay rates
Acceptance & reco. efficiency
 $B \to \pi^{+} \ell \nu$
 $h_{n} = 1$
 $n_{n} = 2$
 $\lambda_{n} = 2$
 λ_{n

 $= \mathscr{B}(B \rightarrow$

 $\Delta \mathscr{B}(B -$

PRL 131, 211801 (2023)

Fitter corporates experimental observation of templates' normalisations η and $B \to \pi \ell \nu$ form factor (FF) parameters $a^{+,0}$

$$\begin{aligned} \mathcal{P}(\nu) + \mathcal{B}(B \to \pi^+ \ell \nu) + \mathcal{B}(B \to X_u^{\text{other}} \ell \nu) & \left| V_{ub}^{\text{excl.}} \right| = \sqrt{\frac{\mathcal{B}(B \to \pi \ell \nu)}{\tau_B \cdot \Gamma_{\text{FF}}}} \\ \mathcal{X}_u \ell \nu) \\ \mathcal{X}_u \ell \nu = \mathcal{B}(B \to X_u \ell \nu) \cdot \epsilon_{\Delta \text{PS}:\text{E}_\ell^B > 1\text{GeV}} & \left| V_{ub}^{\text{incl.}} \right| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \cdot \Delta \Gamma_{\text{GGOU}}}} \end{aligned}$$

First Simultaneous Determination of Incl. & Excl. Vub

$$\begin{vmatrix} V_{ub}^{\text{excl.}} \\ V_{ub}^{\text{incl.}} \end{vmatrix} = (3.78 \pm 0.23_{\text{stat}} \pm 0.16_{\text{syst}} \pm 0.14_{\text{theo}}) \times 10^{-10} \\ \begin{vmatrix} V_{ub}^{\text{incl.}} \\ V_{ub}^{\text{incl.}} \end{vmatrix} = (3.88 \pm 0.20_{\text{stat}} \pm 0.31_{\text{syst}} \pm 0.09_{\text{theo}}) \times 10^{-10} \\ \textbf{Ratio} = 0.97 \pm 0.12 \quad (\rho = 0.11) \\ \end{vmatrix}$$

$$\begin{vmatrix} V_{ub}^{\text{excl.}} \\ V_{ub}^{\text{incl.}} \end{vmatrix} = (4.05 \pm 0.30_{\text{stat}} \pm 0.16_{\text{syst}} \pm 0.16_{\text{theo}}) \times 10^{-10} \\ \begin{vmatrix} V_{ub}^{\text{incl.}} \\ V_{ub}^{\text{incl.}} \end{vmatrix} = (3.87 \pm 0.20_{\text{stat}} \pm 0.31_{\text{syst}} \pm 0.09_{\text{theo}}) \times 10^{-10} \\ \textbf{Ratio} = 1.05 \pm 0.14 \quad (\rho = 0.07) \\ \end{vmatrix}$$

Weighted average of excl. & incl. :

$$\begin{vmatrix} V_{ub} \end{vmatrix} = (3.84 \pm 0.26) \times 10^{-3}$$
 (LC)
 $\begin{vmatrix} V_{ub} \end{vmatrix} = (3.96 \pm 0.27) \times 10^{-3}$ (LC)

PRL 131, 211801 (2023)

QCD + exp.QCD)

CKM global fit (w/o $|V_{ub}|$): $(3.64 \pm 0.07) \times 10^{-3}$, compatible within 0.8σ and 1.2σ , respectively

Summary & Outlook

- Beneficial experience from Belle has been carried over to ongoing Belle II studies
- Expected compatible precisions between Belle and Belle II Run1
- Resolving all challenges in $B \to X_{\mu} \ell \nu$ measurements require continuous efforts from experiment and theory
- Improvements on **inclusive modelling** are urgently needed!!

Can we say the 'Vub puzzle' has been resolved? If not, what key elements are still missing?

THANK YOU

Belle Experiment

- KEKB is an asymmetric-energy e^+e^- collider operating near $\Upsilon(4S)$ mass peak
- Unique advantages for analysing inclusive decays and process involving multiple neutrals

Belle detector: nearly 4π coverage, good performances on momentum/vertex resolution, particle identification

Belle II Experiment

Upgraded detector and accelerator

Particle Identification:

Time-of-Propagation counter (barrel) Prox. Focusing Aerogel RICH (fwd)

positron (4 GeV)

Readout (TRG, DAQ):

Max. 30kHz L1 trigger ~100% efficient for hadronic events. 1MB (PXD) + 100kB (others) per event over 30GB/sec to record

Offline computing:

Distributed over the world via the GRID

arXiv:1011.0352 [physics.ins-det]

Central Drift Chamber:

He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Hybrid Model of $B \to X_{\mu} \ell \nu$

Hybrid MC is a **combination** of **resonances** (exclusive decays) and **non-resonant** contribution in the inclusive $B \to X_{\mu} \ell \nu$ decays

EvtGen simulation: \bullet

(1) exclusive modes $B \to (\pi, \rho, \omega, \eta^{(\prime)}) \ell \nu$ with latest WA form factors & branching fractions

(2) fully inclusive $B \to X_{\mu} \ell \nu$ (only non-resonant shapes, e.g. BLNP, GGOU)

Calculate hybrid weights to mix resonance & non-res. in **3D** \bullet binning of (q^2, E_{ℓ}^B, M_X) to recover total $\mathscr{B}(B \to X_{\mu} \ell \nu)$ in each bin

$$H_i = \frac{R_i}{R_i} + \omega_i N_i$$

Systematic uncertainties include the impact from exclusive FFs & BRs, total $\mathscr{B}(B \to X_{\mu} \ell \nu)$, inclusive models

First Simultaneous Determination of Incl. & Excl. Vub

Leading Systematic Uncertainties

PRL 131, 211801 (2023)

	Relative Syst. Uncertainty
de	$\mathscr{B}(B \to \pi \ell \nu)$
	4.1%
	3.5%
	1.2%
de	$\Delta \mathscr{B}(B \to X_{u} \ell \nu)$
	10.9%
	5.3%
	3.4%
	2.8%

Values from HFLAV 2021

BLNP 7.4.13032

Bosch, Lange, Neubert and Paz (BLNP) [594–597] provide theoretical expressions for the triple 3033 differential decay rate for $B \to X_u \ell^+ \nu_\ell$ events, incorporating all known contributions, whilst 3034 smoothly interpolating between the "shape-function region" of large hadronic energy and small 3035 invariant mass, and the "OPE region" in which all hadronic kinematical variables scale with the 3036 b-quark mass. BLNP assign uncertainties to the b-quark mass, which enters through the leading 3037 shape function, to sub-leading shape function forms, to possible weak annihilation contribution, 3038 and to matching scales. The BLNP calculation uses the shape function renormalization scheme; 3039 the heavy quark parameters determined from the global fit in the kinetic scheme, described in 3040 7.2.2, were therefore translated into the shape function scheme by using a prescription by 3041 Neubert [598, 599]. The resulting parameters are $m_b(SF) = (4.582 \pm 0.023 \pm 0.018)$ GeV, 3042 $\mu_{\pi}^2(SF) = (0.202 \pm 0.089^{+0.020}_{-0.040})$ GeV/ c^2 , where the second uncertainty is due to the scheme 3043 translation. The extracted values of $|V_{ub}|$ for each measurement along with their average are 3044 given in Table 93 and illustrated in Fig. 63(a). The total uncertainty is $^{+5.6}_{-5.7}$ % and is due 3045 to: statistics $\binom{+1.5}{-1.6}$, detector effects $\binom{+1.7}{-1.7}$, $B \rightarrow X_c \ell^+ \nu_\ell$ model $\binom{+0.9}{-1.0}$, $B \rightarrow X_u \ell^+ \nu_\ell$ 3046 model $\binom{+1.8}{-1.8}$, heavy quark parameters $\binom{+2.7}{-2.8}$, SF functional form $\binom{+0.1}{-0.3}$, sub-leading shape 3047 functions $\binom{+0.8}{-0.8}$, matching scales in BLNP $\mu, \mu_i, \mu_h \begin{pmatrix} +3.8\\ -3.8 \end{pmatrix}$, and weak annihilation $\binom{+0.0}{-0.7}$. The error assigned to the matching scales is the source of the largest uncertainty, while the 3049 uncertainty due to HQE parameters (b-quark mass and $\mu_{\pi}^2(SF)$) is second. The uncertainty due 3050 to weak annihilation is assumed to be asymmetric, *i.e.* it only tends to decrease $|V_{ub}|$. 3051

• Endpoint of electron spectra from BaBar (2016)

 $m_b^{\text{SF}} = 4.561 \pm 0.023, \ \mu_\pi^{2(\text{SF})} = 0.149 \pm 0.04, \ \mu_i = 2.0, \ \mu_h = 4.25$

Evaluation of Leading Uncertainties

Leading errors for IV_{ub}I_{BLNP}:

• HQE para (m_b, μ_π^2)

- 1. taken from $B \to X_c \ell \nu$ global fit in kinetic scheme [details]
- 2. convert to shape function scheme (two steps: kinetic -> pole -> SF)
- 3. compute with BLNP framework (50 points of mb-mupi ellipse)
- 4. take max +/- differences on $|V_{ub}|$

$$m_b(SF) = (4.582 \pm 0.023 \pm 0.018_{schen})$$

 $\mu_{\pi}^2(SF) = (0.202 \pm 0.089 + 0.020_{sche.})_{-0.040_{sche.}})$

• Matching scales (μ_h , μ_i , $\bar{\mu}$)

1.No correlations assigned 2. Central values: μ_i =1.5GeV, μ_h =m_b/2, $\bar{\mu}$ = μ_i 3. Vary μ_h , $\bar{\mu}$ independently by sqrt(2)^{±1}; the intermediate scale μ_i fixed at 1.5 GeV

Generator-level Truth

•Very large deviation between the old BLNP (red) and current one (black). •The old one is close to the current variation #4, while #3 pulls to the other side.

Central BLNP: red -> black

#	
0	Nominal
1	HQE eigen vari(1up)
2	HQE eigen vari(1down)
3	HQE eigen vari(2up)
4	HQE eigen vari(2down)
5	mb scheme. up
6	mb schem. dwon
7	mu_pi^2 shem. up
8	mu_pi^2 shem. down
9	mu_h up
10	mu_h down
11	mu_bar up
12	mu_bar down

