Disoriented Isospin Condensates as source of anomalous kaon correlations at LHC

Winter Workshop on Nuclear Dynamics 2024

Mayank Singh

In Collaboration with Joe Kapusta and Scott Pratt Based on Phys.Rev.C 107 (2023) 1, 014913, arXiv: 2306.13280

Kaon correlations from ALICE

ALICE collaboration reported a surprising measurement in 2022

Physics Letters B 832 (2022) 137242

Neutral to charged kaon yield fluctuations in Pb - Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

ALICE Collaboration*

ARTICLE INFO Received 21 January 2022 Received in revised form 13 May 2022

Article history

Accepted 7 June 2022

Editor: M. Daser

We present the first measurement of event-by-event fluctuations in the kaon sector in Pb - Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ALICE detector at the LHC. The robust fluctuation correlator v_{then} is used to evaluate the magnitude of fluctuations of the relative yields of neutral and charged kaons, as well as the relative yields of charged kaons, as a function of collision centrality and selected kinematic ranges. While the correlator view[K+,K-] exhibits a scaling approximately in inverse proportion of the charged particle multiplicity, vdva [K2, K2] features a significant deviation from such scaling. Within uncertainties, the value of $v_{s-1}|K_{s}^{0}, K_{s}^{\pm}|$ is independent of the selected transverse momentum interval, while it exhibits a pseudorapidity dependence. The results are compared with HIJING, AMPT and EPOS-LHC predictions, and are further discussed in the context of the possible production of disoriented chiral condensates in control Rh. Rh. cellicione

© 2022 European Organization for Nuclear Research, ALICE, Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

While the correlator $\nu_{\rm dvn}[K^+,K^-]$ exhibits a scaling approximately in inverse proportion of the charged particle multiplicity, $\nu_{\rm dyn}[K_{\rm s}^0, K^{\pm}]$ features a significant deviation from such scaling.

S. Gavin and J. I. Kapusta, Phys. Rev. C 65, 054910 (2002)

- $\nu_{\rm dyn}$ [A,B] measures how detection of particles of type A or B is correlated with itself than with the other type
- Specifically

$$u_{
m dyn}[A,B] = R_{AA} + R_{BB} - 2R_{AB}$$

where R_{AB} are robust covariences

$$R_{AB} = \frac{\langle N_A N_B \rangle - \langle N_A \rangle \langle N_B \rangle - \langle N_A \rangle \delta_{AB}}{\langle N_A \rangle \langle N_B \rangle}$$

- For uncorrelated particles, $\textit{R}_{\textit{AA}} = \textit{R}_{\textit{BB}} = \textit{R}_{\textit{AB}} = 0$ and consequently, $\nu_{\rm dyn} = 0$
- If $\nu_{\rm dyn} > 0$, detection of one particle biases the next particle to be of the same type. It is opposite for $\nu_{\rm dyn} < 0$

ALICE Collaboration, Phys. Lett. B 832, 137242 (2022) R. Nayak, S. Dash, B. Nandi and C. Pruneau, Phys. Rev. C 101, 054904 (2020) 0.03 0.3 (a) (b) ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}, |\eta| < 0.5$ ALICE, Pb–Pb $\sqrt{s_{_{NN}}}$ = 2.76 TeV, $|\eta| < 0.5$ († $K^{\pm}: 0.2 < p_T (GeV/c) < 1.5$ $K^0_S: 0.4 < p_T (GeV/c) < 1.5$ $K^{\pm}: 0.2 < p_{T} (GeV/c) < 1.5$ $K^{0}_{S}: 0.4 < p_{T} (GeV/c) < 1.5$ 0.2 0.02 $K_{S}^{0}K^{\pm}$ 0.1 0.01 $v_{\rm dyn}/\alpha$ v_{dyn} C K⁺K n -0.1E K⁺K -0.05 -0.15-0.1 - ALICE -0.2 AMPT HLING ALICE HILINO SOFE BON -0.15-0.25 SON RON $\sqrt{S_{\text{NIN}}} = 5.02 \text{ TeV}$ EPOS-LHC. EPOS-LHC, VSNN = 5.02 TeV -0.2 20 60 80 20 60 80 40 40 Centrality (%) Centrality (%) $\alpha \equiv \frac{1}{N_{K_{\rm c}^0}} + \frac{1}{N_{K^{\pm}}} \approx \frac{6}{N_{\kappa}^{tot}}$

Vanderbilt University

Mayank Singh

4/21

ALICE Collaboration, Phys. Lett. B 832, 137242 (2022) R. Nayak, S. Dash, B. Nandi and C. Pruneau, Phys. Rev. C 101, 054904 (2020)

• They also extend over a unit in rapidity

- The measured u_{dyn} has three distinct anomalies
 - 1. It is unusually large
 - 2. Scaled $u_{\rm dyn}$ grows with multiplicity
 - 3. Correlations stretch over a unit in rapidity
- The systems appears to have an unusual neutral kaon fraction over large volumes

Coherent domains seem unavoidable

S. Gavin and J. I. Kapusta, Phys. Rev. C 65, 054910 (2002)

- Suppose we have domains of condensates (not necessarily disoriented) which give rise to coherent emission i.e. have flat neutral kaon fractions
- If the number of domains is >2, $u_{
 m dyn}[K^0_{\cal S}, {\it K}^{\pm}]$ is given by

$$\nu_{\rm dyn} = 4\beta_{\rm K} \left(\frac{\beta_{\rm K}}{3N_{\rm d}} - \frac{1}{N_{\rm K}^{\rm tot}}\right)$$

where $\beta_{\rm K}$ is he fraction of all kaons that come from condensate domains, N_d is the number of such domains

• The relation is derived from folding the distributions of kaons from condensates and thermal sources. For multiple condensate sources, *P*(*f*) again approaches a Gaussian by the Central Limit Theorem

Vanderbilt University

• β_{K} can be estimated from the energy of condensation

$$\beta_{K} = \frac{\epsilon_{\zeta} V_{d}}{m_{K} N_{K}^{tot}}$$

 ϵ_{ζ} is the energy density available from condensation and V_d is the total volume of all condensates put together

• Let's assume that N_d scales with kaon multiplicity and V_d scales with N_d and the lifetime of the fireball

$$\begin{aligned} & \mathcal{N}_{d} &= a \mathcal{N}_{K}^{tot} \\ & \mathcal{V}_{d} &= v_{0} \mathcal{N}_{K}^{tot} \left(\frac{\tau_{av}}{10\tau_{0}} \right) \end{aligned}$$

Vanderbilt University

• Putting this together we have

$$\beta_{K} = b\left(\frac{\tau_{av}}{10\tau_{0}}\right)$$
$$b = \frac{\epsilon_{\zeta}v_{0}}{m_{K}}$$

• And a two parameter formula for $u_{
m dyn}/lpha$

$$\frac{\nu_{\rm dyn}}{\alpha} = \frac{2}{3} b\left(\frac{\tau_{av}}{10\tau_0}\right) \left[\frac{b}{3a}\left(\frac{\tau_{av}}{10\tau_0}\right) - 1\right]$$

• We obtain τ_{av} as a function of centrality from realistic hydrodynamic simulations of heavy-ion collisions

Vanderbilt University

We performed fit for 5 central points

$$b = 0.1044 \pm 0.0380$$
$$\frac{b^2}{a} = 0.2187 \pm 0.0458$$

For reference energy density $\epsilon_{\zeta}=25~{\rm MeV/fm^3},$ only \textit{V}_{d} changes

Centrality	N _d	V_d (fm ³)	β_{K}
0-5 %	9.32	1120	0.302
5-10 %	7.29	821	0.283
10-15 %	6.02	640	0.267
15-20 %	4.67	476	0.256
20-40 %	2.88	258	0.225
40-60 %	1.20	82	0.172

Vanderbilt University

Simple kaon systems

- Probability distribution of neutral fraction of kaons in a degenerate state is flat
- Above result holds when
 I₃ = 0 irrespective of
 whether overall isospin is
 unconstrained or
 constrained to be in
 isosinglet. This result is also
 holds when the isospin
 state is disoriented as in
 DCC

Simple kaon systems

- These values of $\nu_{\rm dyn}/\alpha$ are for a single domain in isolation and not what is measured in experiments
- These needs to be folded with other domains and thermal kaons to calculate experimental observables
- Only large number of degenerate kaons can explain the data.

Hadron Gas Model

S. Pratt and R. Steinhorst, Phys. Rev. C 102, 064906 (2020)

- We set up a box at a given temperature and fill it with hadrons of many species consistent with canonical ensemble. They are then allowed to decay
- ν_{dyn} decreases with increasing volumes. It is consistent with data for very small volumes, which are not relevant for heavy-ion collisions

2+1 flavor Linear Sigma Model

J. Schaffner-Bielich and J. Randrup, Phys. Rev. C 59, 3329 (1999) The field potential U is expressed in terms of the 3×3 bosonic field matrix M as

$$\begin{aligned} \mathcal{U}(\mathcal{M}) &= -\frac{q}{2}\mu^{2}\mathrm{Tr}(\mathcal{M}\mathcal{M}^{\dagger}) + \lambda\mathrm{Tr}(\mathcal{M}\mathcal{M}^{\dagger}\mathcal{M}\mathcal{M}^{\dagger}) + \lambda'[\mathrm{Tr}(\mathcal{M}\mathcal{M}^{\dagger})]^{2} - c(\det\mathcal{M} + \det\mathcal{M}^{\dagger}) \\ &- f_{\pi}m_{\pi}^{2}\sigma - \left(\sqrt{2}f_{\mathcal{K}}m_{\mathcal{K}}^{2} - \frac{1}{\sqrt{2}}f_{\pi}m_{\pi}^{2}\right)\zeta \end{aligned}$$

 σ meson is a $\bar{u}u+\bar{d}d$ scalar and the ζ meson is an $\bar{s}s$ scalar. Assuming only those two condense, we have

$$\begin{aligned} U(\sigma,\zeta) &= -\frac{1}{2}\mu^2(\sigma^2+\zeta^2) + \frac{1}{2}\lambda(\sigma^4+2\zeta^4) + \lambda'(\sigma^2+\zeta^2)^2 - c\sigma^2\zeta - f_\pi m_\pi^2\sigma \\ &- \left(\sqrt{2}f_K m_K^2 - \frac{1}{\sqrt{2}}f_\pi m_\pi^2\right)\zeta \end{aligned}$$

Energy of Condensation

- In high temperature limit, in absence of condensation $\sigma = \zeta = 0$. We also have vacuum values of $\sigma_{\rm vac} = f_{\pi}$ and $\zeta_{\rm vac} = \sqrt{2} f_{\mathcal{K}} \frac{1}{\sqrt{2}} f_{\pi}$
- We get σ and ζ value at chiral symmetry restoration temperature from lattice

HotQCD Collaboration, Phys. Rev. D 85, 054503 (2012)

σ_{160}	\approx	$0.25\sigma_{\rm vac}$
ζ_{160}	\approx	$0.85\zeta_{\rm vac}$

Plugging in the values,

$$U_{2+1}(\sigma_{\text{vac}}, \zeta_{\text{vac}}) = -265 \text{ MeV/fm}^3$$
$$U_{2+1}(\sigma_{160}, \zeta_{160}) = -234 \text{ MeV/fm}^3$$
$$\Delta U_{2+1} = 31 \text{ MeV/fm}^3$$

Vanderbilt University

Disoriented Isospin Condensate (DIC)

- It is always assumed that $\langle u\bar{u}\rangle = \langle d\bar{d}\rangle$. What if their relative magnitudes fluctuated at finite temperature? Nothing in QCD prohibits this
- This will be a fluctuation between the isosinglet $\langle u\bar{u} \rangle + \langle d\bar{d} \rangle$ and isotriplet $\langle u\bar{u} \rangle - \langle d\bar{d} \rangle$. The excitation of latter corresponds to triplet $a_0(980)$ meson
- If the condensate is all $\langle u\bar{u}\rangle$, then at the time of cooling it will combine with strange quarks to form charged kaons. Similarly all $\langle d\bar{d}\rangle$ will form neutral kaons
- This will lead to the same kaon neutral fraction phenomenology as above

Disoriented Isospin Condensates (DIC)

- Is it plausible? Thermodynamic energy cost can be calculated in the linear sigma model
- Scalar field matrix *M* has diagonal elements (σ_u, σ_d, ζ) (as opposed to (σ, σ, ζ)) where

$$\begin{array}{rcl} \sigma_u &=& -\langle u\bar{u}\rangle/\sqrt{2}c'\\ \sigma_d &=& -\langle d\bar{d}\rangle/\sqrt{2}c'\\ \zeta &=& -\langle s\bar{s}\rangle/\sqrt{2}c' \end{array}$$

• We can calculate the energy associated with these fluctuations

$$U(\mathbf{M}) = -\frac{1}{2}\mu^{2}(\sigma_{u}^{2} + \sigma_{d}^{2} + \zeta^{2}) + \lambda'(\sigma_{u}^{2} + \sigma_{d}^{2} + \zeta^{2})^{2} + \lambda(\sigma_{u}^{4} + \sigma_{d}^{4} + \zeta^{4}) - 2c\sigma_{u}\sigma_{d}\zeta - \sqrt{2}c'(m_{u}\sigma_{u} + m_{d}\sigma_{d} + m_{s}\zeta)$$

Vanderbilt University

Mayank Singh

17/21

Disoriented Isospin Condensates (DIC)

Light : $A = 0.01984, T_0 = 161.7 \text{MeV}, \Delta T = 9.009 \text{MeV}$ Strange : $A = 0.02402, T_0 = 194.0 \text{MeV}, \Delta T = 22.25 \text{MeV}$

Vanderbilt University

Energy cost of DIC

• We can also calculate the relative probability of such a state $= e^{-V\Delta U/T}$

- It would be illuminating to see similar measurements at 5.02 TeV Pb+Pb collisions at LHC and at 200 GeV Au+Au collisions at RHIC. More differential measurement in rapidities and azimuthal angles are needed
- Maybe Lattice QCD can provide guidance
- Need a theory for evolution of DIC fluctuations in conjunction with the hydrodynamic medium
- Are we seeing the melting and refreezing of the QCD vacuum?

- ALICE has measured isospin correlations in the kaon sector which are anomalously large, have anomalous centrality dependence and extend to over a unit in rapidity
- These measurements cannot be explained by any known means without invoking kaon condensation (least likely), Disoriented Chiral Condensates (less likely), or Disoriented Isospin Condensates (most likely)
- DCC involve disorientation in the strange quark sector while DIC involve disorientation in the light quark sector
- The DIC would show similar anomaly in particles rich in *u/ū* vs those rich in *d/d*, like Ξ⁰ and Ξ[−] and is a testable, verifiable and refutable idea.