

Supported in part by:

Office of Science

Isaac Mooney (Yale University, BNL) for the STAR Collaboration isaac.mooney@yale.edu

Jets at STAR

39th Winter Workshop on Nuclear Dynamics

Jackson, Wyoming February 12, 2024

How to understand jet evolution in vacuum Two ways: the How and the What

How to understand jet evolution in vacuum Two ways: the How and the What

Energy flows

How to understand jet evolution in vacuum Two ways: the How and the What

Energy flows

Constituent identity

Isaac Mooney

200

CO

How to understand jet evolution in media Two ways: the How and the What

8

00

Energy flows

Constituent identity

Medium-induced gluon bremsstrahlung

Isaac Mooney

Hadronization

How to understand jet evolution in media Two ways: the How and the What

Jet-induced medium response

Energy flows

Constituent identity

Medium-induced gluon bremsstrahlung

Isaac Mooney

00

Hadronizatior

Two ways: the How and the What

Jet-induced medium response

Energy flows

Isaac Mooney

Relativistic Heavy Ion Collider (RHIC) collides p+p, p+Au, O+O, Zr+Zr, Ru+Ru, Au+Au, etc. beams at $\sqrt{s_{NN}} = 200$ GeV, etc.

Time Projection Chamber (TPC) $\left[|\eta| < 1 \right]$: momenta of charged tracks + centrality

Barrel Electromagnetic Calorimeter (BEMC) [$|\eta| < 1$]: neutral energy deposits + provides online trigger (Jet Patch: $E_T^{patch} > 7.4$ GeV, High Tower: $E_T > 4.2$ GeV)

Inner Beam-Beam Counter (iBBC) [3.4 < $|\eta|$ < 5.0]: forward detector,

east/Au-going side activity used as centrality proxy in p+Au

Relativistic Heavy Ion Collider (RHIC) collides p+p, p+Au, O+O, Zr+Zr, Ru+Ru, Au+Au, etc. beams at $\sqrt{s_{NN}} = 200$ GeV, etc.

Time Projection Chamber (TPC) $[|\eta| < 1]$: momenta of charged tracks + centrality

Barrel Electromagnetic Calorimeter (BEMC) [$|\eta| < 1$]: neutral energy deposits + provides online trigger (Jet Patch: $E_T^{patch} > 7.4$ GeV, High Tower: $E_T > 4.2$ GeV)

Inner Beam-Beam Counter (iBBC) [3.4 < $|\eta|$ < 5.0]: forward detector,

east/Au-going side activity used as centrality proxy in p+Au

Relativistic Heavy Ion Collider (RHIC) collides p+p, p+Au, O+O, Zr+Zr, Ru+Ru, Au+Au, etc. beams at $\sqrt{s_{NN}} = 200$ GeV, etc.

Time Projection Chamber (TPC) $[|\eta| < 1]$: momenta of charged tracks + centrality

Barrel Electromagnetic Calorimeter (BEMC) [$|\eta| < 1$]: neutral energy deposits + provides online trigger (Jet Patch: $E_T^{patch} > 7.4$ GeV, High Tower: $E_T > 4.2$ GeV)

Inner Beam-Beam Counter (iBBC) [3.4 < $|\eta|$ < 5.0]: forward detector,

east/Au-going side activity used as centrality proxy in p+Au

Isaac Mooney

Image: NSWW

Relativistic Heavy Ion Collider (RHIC) collides p+p, p+Au, O+O, Zr+Zr, Ru+Ru, Au+Au, etc. beams at $\sqrt{s_{NN}} = 200$ GeV, etc.

Time Projection Chamber (TPC) $[|\eta| < 1]$: momenta of charged tracks + centrality

Barrel Electromagnetic Calorimeter (BEMC) $[|\eta| < 1]$: neutral energy deposits + provides online trigger (Jet Patch: $E_T^{patch} > 7.4$ GeV, High Tower: $E_T > 4.2$ GeV)

Inner Beam-Beam Counter (iBBC) [3.4 < $|\eta|$ < 5.0]: forward detector,

east/Au-going side activity used as centrality proxy in p+Au

Precision QCD; exploring the Lund plane with *multi-dimensional jet substructure*

Path-length dependence of jet energy loss in medium with jet anisotropies (with respect to event plane)

Energy-density dependence of jet energy loss in medium; angular distribution of radiation in quenched jets with *inclusive/semi-inclusive jet & high-p_T hadron yields*

Isaac Mooney

Precision QCD; exploring the Lund plane with *multi-dimensional jet substructure*

Path-length dependence of jet energy loss in medium with jet anisotropies (with respect to event plane)

Energy-density dependence of jet energy loss in medium; angular distribution of radiation in quenched jets with *inclusive/semi-inclusive jet & high-p_T hadron yields*

Isaac Mooney

Jet substructure

$$\frac{\min\left(p_{\mathrm{T},i}, p_{\mathrm{T},j}\right)}{p_{\mathrm{T},i} + p_{\mathrm{T},j}} > z_{\mathrm{cut}} \left(\frac{\Delta R_{ij}}{R}\right)^{\beta} \qquad z_{\mathrm{g}} = \frac{\min\left(p_{\mathrm{T},1}, p_{\mathrm{T},2}\right)}{p_{\mathrm{T},1} + p_{\mathrm{T},2}}$$

Image: Laura Havener, modified from Andrews et al., J.Phys.G 47 (2020) 6, 065102

Image: Larkoski, Marzani, Thaler, Xue, PRL 119 (2017) 13, 132003

SoftDrop¹ grooming: reduce soft non-perturbative contribution → better theoretical control

Isaac Mooney

¹Larkoski, Marzani, Soyez, Thaler, JHEP 05 (2014), 146

Multi-dimensional jet substructure

- Carlo (MC) models
- Observe: wider splits are harder. MCs in good agreement.

• Now able to make slices in the Lund Plane \rightarrow more stringent tests of Monte

- Carlo (MC) models
- for narrow splits with high k_T

Now able to make slices in the Lund Plane \rightarrow more stringent tests of Monte

• Observe similarly in ALICE: high- k_T splits are wider. But tension with models

Isaac Mooney

²Andreassen, Komiske, Metodiev, Nachman, Thaler, Ph.Z 124 (2020) 18, 182001

Precision QCD; exploring the Lund plane with *multi-dimensional jet substructure*

Path-length dependence of jet energy loss in medium with jet anisotropies (with respect to event plane)

Energy-density dependence of jet energy loss in medium; angular distribution of radiation in quenched jets with *inclusive/semi-inclusive jet & high-p_T hadron yields*

Isaac Mooney

Simple scaling in the hadronic and partonic regimes

• STAR more similar to CMS high- p_T (high-x) jets than ALICE or CMS low-p⊤ jets – q vs. g differences

Precision QCD; exploring the Lund plane with *multi-dimensional jet substructure*

Path-length dependence of jet energy loss in medium with jet anisotropies (with respect to event plane)

Energy-density dependence of jet energy loss in medium; angular distribution of radiation in quenched jets with *inclusive/semi-inclusive jet & high-p_T hadron yields*

Isaac Mooney

- Suppression strongly increases with $\langle N_{\rm part} \rangle$

• R_{AA} falls with $\langle N_{\text{part}} \rangle$ independent of collision species (system size)

- R_{AA} falls with $\langle N_{\rm part} \rangle$ independent of collision species (system size), above ~ 20
- Later: for given $\langle N_{\text{part}} \rangle$, how does geometry influence *E*-loss?

- Jet R_{AA} consistent with hadron R_{AA}
- Strong suppression across p_T
- RHIC and LHC jets already have kinematic overlap
 - Similar quenching?

- Jet RAA consistent with hadron RAA
- Strong suppression across p_T
- RHIC and LHC jets already have kinematic overlap
 - Similar quenching? Absolute, smaller. Relative, *larger!*

Semi-inclusive yield modification in pAu collisions

bars only; however, detector effects cancel in the ratio

• Hot nuclear matter effects in pAu collisions?^{1,2,3,4,5,6,...}

Jet yield suppression, but on both *near* and *away* side \rightarrow not surface bias as typical in AA with high p_T trigger...

 Jet substructure*, dijet p⊤ balance A_J* also unmodified

Anti-correlation of event activity at large rapidity with jet p_T at mid-rapidity* suggests $t \sim 0$ kinematics^{7,8}

*not shown

5,...

Precision QCD; exploring the Lund plane with *multi-dimensional jet substructure*

Path-length dependence of jet energy loss in medium with jet anisotropies (with respect to event plane)

Energy-density dependence of jet energy loss in medium; angular distribution of radiation in quenched jets with *inclusive/semi-inclusive jet & high-p*_T hadron yields

Isaac Mooney

Event plane (EP) dep. of associated hadron yields

STAR, arXiv:2307.13891

- Expectation: high (low)-pT suppression (enhancement) for outof-plane (OOP) vs. in-plane (IP) jets: path-length dependent quenching
- No significant deviation from unity within uncertainties
- Jet energy loss / medium density fluctuations spoiling effect?

Jet v₂

 $v_n(p_{\rm T}, y) = \langle \cos(n(\phi - \Psi_{\rm RP})) \rangle$

- New forward detector at STAR, EPD, gives improved reaction plane (RP) resolution, no autocorrelation with mid-rapidity measurement
- v₂ in this context linked to pathlength dependent quenching, not flow
- Clear v_2 signal, independent of jet R, p_T , in high-statistics isobar data

Event-shape engineering

- mid- p_T of charged track yields, for high vs. low q_2 events

STAR analysis ongoing — without selecting on EP angle, see enhancement at

Interplay between eccentricity/density, elliptic/radial flow. Also observed by ALICE

Future prospects **Energy flows**

- Two-Point Energy Correlator Generalized angularities: less conservative systematic uncertainties, $\frac{d \Sigma^{(1)}}{d\theta}$ extension to jet momentum profile $\rho(r)$ =100 GeV. L=2 ft $\ln \theta$ Jet v₂: extended to OO collisions, studying non-flow contribution

- EECs: higher orders; charge-dependent; in heavy-ion collisions • R_{AA}: analyzing R_{pAu}
- Event shape engineering: event-plane angle dependence study in progress
- Runs 23+25^{1,2}: expected ~3x increase in statistics relative to current AA analyses w/ Run 14 \rightarrow improved uncertainties e.g. for γ_{dir} +jet I_{AA} , and kinematic reach / overlap with LHC

Dominguez, Kunnawalkam Elavavalli, Holguin, Marguet, Moult

Charm quark energy loss, diffusion, fragmentation modification in medium with charmed-jet yields

Constituent identity

Hadrochemistry modification via medium response with *baryon-to-meson ratios*

WWND, 2/12/2024

Hadronization mechanism with *flavor correlators*

Isaac Mooney

D⁰-jet spectra, profile, fragmentation

 $D^0 = c\bar{u}$

38

Baryon-to-meson ratios Signature of medium response?

- No observed modification of *in-jet* p/π ratio for R = 0.3 jets

Possible sign of parton coalescence in jet: enhanced baryon-to-meson ratio in AA

Future prospects **Constituent identity**

• D^o-jet: adding another dataset to increase statistics; adding generalized angularities; tightening $D^0 p_T$ threshold

• r_c : extension to heavy-ion collisions underway

Herwig tune to RHIC kinematics ongoing

 $R = 0.4, p_T^{jet} > 10 \text{ GeV/}c$

Baryon-to-meson ratios: studying dependence on constituent p_T threshold

Isaac Mooney

What we've learned

- Precision era of jet substructure: many-dimensional corrections and correlations, systematically mapping the phase space for QCD radiation in vacuum at lower \sqrt{s}
- First measurements of new observables EECs and r_c separate perturbative and nonperturbative physics cleanly for improved theoretical control
- Demonstrated strong dependence of quenching on N_{part} (~similar energy density) across collision species; more energy lost at RHIC than LHC, relative to jet p_T; jet profile broadening, with radiation roughly recovered by ~0.5 radians; and finite jet v₂. No quenching observed in pAu collisions.
- No medium-induced hadrochemistry effect observed. Suppression of jets with hardfragmenting charm hadrons but as yet no observed corresponding enhancement of softfragmented charm jets or diffusion to broader angles

42

Jets at STAR In the 2010s

Precision tracking

Forward jets → different x; q v. g

Unbiased centrality/ EP determination

Etc!

WWND, 2/12/2024

Backup

Isaac Mooney

STAR Zero Degree Calorimeters

WWND, 2/12/2024

