Hints of Entanglement Suppression in HyperonNucleon Scattering

- Ian Low
- Argonne/Northwestern
- The 39th Winter Workshop on Nuclear Dynamics, Feb. 13, 2024

Acknowledgement:

Why study hyperon-nucleon interactions?

Understanding NN and YN interactions is essential for having a comprehensive picture of nuclear dynamics and strong interactions.

- Understand hypernuclear structures and hyperon matters
- NN and YN interactions together give a unified understanding of baryonbaryon interactions.
- The formation of heavy neutron star \rightarrow The hyperon puzzle

Neutron stars offer a unique window into fundamental matters and interactions under extreme conditions.

Figure from arXiv:1805.00837

Neutron stars offer a unique window into fundamental matters and interactions under extreme conditions.

- The inner core is modeled as a uniform liquid in equilibrium w.r.t. weak interactions.
- As a consequence, the inverse process of hyperon decaying into nucleons must also occur.
- The appearance of hyperons softens the equation of state (EOS) and reduces the mass of the neutron star.

Figure from arXiv:1805.00837

Under these assumptions, neutron stars are expected to be lighter than (1.5-2) Solar masses:

Under these assumptions, neutron stars are expected to be lighter than (1.5-2) Solar masses:

But we have observed neutron stars heavier than two solar masses.
This is the hyerpon puzzle!

- So we don't quite understand YN interactions, because there's been very few measurements historically.
- So we don't quite understand YN interactions, because there's been very few measurements historically.
- But recently there are several renewed experimental efforts to study YN scattering more precisely:

Precise Measurement of Differential Cross Sections of the $\Sigma^{-} p \rightarrow \Lambda n$ Reaction in Momentum Range 470-650 MeV/c
K. Miwa@, ${ }^{1}$ J. K. Ahn, ${ }^{2}$ Y. Akazawa, ${ }^{3}$ T. Aramaki, ${ }^{1}$ S. Ashikaga, ${ }^{4}$ S. Callier, ${ }^{5}$ N. Chiga, ${ }^{1}$ S. W. Choi, ${ }^{2}$ H. Ekawa, ${ }^{6}$
P. Evtoukhovitch, ${ }^{7}$ N. Fujioka, ${ }^{1}$ M. Fujita, ${ }^{8}$ T. Gogami, ${ }^{4}$ T. Harada, ${ }^{4}$ S. Hasegawa, ${ }^{8}$ S. H. Hayakawa, ${ }^{1}$ R. Honda, ${ }^{3}$
S. Hoshino, ${ }^{9}$ K. Hosomi, ${ }^{8}$ M. Ichikawa, ${ }^{4,14}$ Y. Ichikawa, ${ }^{8}$ M. Ieiri, ${ }^{3}$ M. Ikeda, ${ }^{1}{ }^{1}$ K. Imai, ${ }^{8}$ Y. Ishikawa, ${ }^{1}$, S. Ishimoto, ${ }^{3}$ W.
S. Jung, ${ }^{2}$ S. Kajikawa, ${ }^{1}$ H. Kanauchi, ${ }^{1}$ H. Kanda, ${ }^{10}$ T. Kitaoka, ${ }^{1}$ B. M. Kang, ${ }^{2}$ H. Kawai, ${ }^{11}$ S. H. Kim, ${ }^{2}$ K. Kobayashi, ${ }^{9}$ T. Koike, ${ }^{1}$ K. Matsuda, ${ }^{1}$ Y. Matsumoto, ${ }^{1}$ S. Nagao, ${ }^{1}$ R. Nagatomi, ${ }^{9}$ Y. Nakada, ${ }^{9}$ M. Nakagawa, ${ }^{6}$ I. Nakamura, ${ }^{3}$
T. Nanamura,${ }^{4,8}$ M. Naruki, ${ }^{4}$ S. Ozawa, ${ }^{1}$ L. Raux,,${ }^{5}$ T. G. Rogers, ${ }^{1}$ A. Sakaguchi, ${ }^{9}$ T. Sakao, ${ }^{1}$ H. Sako, ${ }^{8}$ S. Sato, ${ }^{8}$ T. Shiozaki, ${ }^{1}$
K. Shirotori, ${ }^{10}$ K. N. Suzuki, ${ }^{4}$ S. Suzuki, ${ }^{3}$ M. Tabata, ${ }^{11}$ C. d. L. Taille, ${ }^{5}$ H. Takahashi, ${ }^{3}$ T. Takahashi, ${ }^{3}$ T. N. Takahashi, ${ }^{15}$
H. Tamura, ${ }^{1,8}$ M. Tanaka, ${ }^{3}$ K. Tanida, ${ }^{8}$ Z. Tsamalaidze, ${ }^{7,12}$ M. Ukai, ${ }^{3,1}$ H. Umetsu, ${ }^{1}$ S. Wada, ${ }^{1}$ T. O. Yamamoto, ${ }^{\text {, }}$
J. Yoshida, and K. Yoshimura ${ }^{13}$
(J-PARC E40 Collaboration)

- So we don't quite understand YN interactions, because there's been very few measurements historically.
- But recently there are several renewed experimental efforts to study YN scattering more precisely:

PHYSICAL REVIEW LETTERS 127, 272303 (2021)

PHYSICAL REVIEW LETTERS 128, 072501 (2022)

Precise Measurement of Differential Cross Sections of the $\boldsymbol{\Sigma}^{-} \boldsymbol{p} \rightarrow$
Momentum Range 470-650 MeV/c
K. Miwa@, ${ }^{1}$ J. K. Ahn, ${ }^{2}$ Y. Akazawa, ${ }^{3}$ T. Aramaki, ${ }^{1}$ S. Ashikaga, ${ }^{4}$ S. Callier, ${ }^{5}$ N. Chiga,
P. Evtoukhovitch, ${ }^{7}$ N. Fujioka, ${ }^{1}$ M. Fujita, ${ }^{8}$ T. Gogami, ${ }^{4}$ T. Harada, ${ }^{4}$ S. Hasegawa, ${ }^{8}$ S. H
S. Hoshino, ${ }^{9}$ K. Hosomi, ${ }^{8}$ M. Ichikawa, ${ }^{4}{ }^{, 14}$ Y. Ichikawa, ${ }^{8}$ M. Ieiri, ${ }^{3}$ M. Ikeda, ${ }^{1}$ K. Imai, ${ }^{8}$ Y.
S. Jung, ${ }^{2}$ S. Kajikawa, ${ }^{1}$ H. Kanauchi, ${ }^{1}$ H. Kanda, ${ }^{10}$ T. Kitaoka, ${ }^{1}$ B. M. Kang, ${ }^{2}$ H. Kawai, ${ }^{11}$
T. Koike, ${ }^{1}$ K. Matsuda, ${ }^{1}$ Y. Matsumoto, ${ }^{1}$ S. Nagao, ${ }^{1}$ R. Nagatomi, ${ }^{\text {, }}$ Y. Nakada, ${ }^{\text {, }}$ M. N
T. Nanamura, ${ }^{4,8}$ M. Naruki, ${ }^{4}$ S. Ozawa, ${ }^{1}$ L. Raux, ${ }^{5}$ T. G. Rogers, ${ }^{1}$ A. Sakaguchi, ${ }^{9}$ T. Sakao, ${ }^{1}$ H.
K. Shirotori, ${ }^{10}$ K. N. Suzuki, ${ }^{4}$ S. Suzuki, ${ }^{3}$ M. Tabata, ${ }^{11}$ C. d. L. Taille, ${ }^{5}$ H. Takahashi, ${ }^{3}$ T. Ta
H. Tamura, ${ }^{1,8}$ M. Tanaka, ${ }^{3}$ K. Tanida, ${ }^{8}$ Z. Tsamalaidze, ${ }^{7,12}$ M. Ukai, ${ }^{3,1}$ H. Umetsu, ${ }^{1}$ S.
J. Yoshida, ${ }^{1}$ and K . Yoshimura ${ }^{13}$
(J-PARC E40 Collaboration)

Improved Λp Elastic Scattering Cross Sections between 0.9 and $2.0 \mathrm{GeV} / c$ as a Main Ingredient of the Neutron Star Equation of State
J. Rowley, ${ }^{35}$ N. Compton, ${ }^{35}$ C. Djalali, ${ }^{35}$ K. Hicks, ${ }^{35}$ J. Price, ${ }^{2}$ N. Zachariou, ${ }^{47}$ K. P. Adhikari, ${ }^{36}$ W. R. Armstrong, H. Atac, ${ }^{41}$ L. Baashen, ${ }^{13}$ L. Barion, ${ }^{17}$ M. Bashkanov, ${ }^{47}$ M. Battaglieri, ${ }^{42,19}$ I. Bedlinskiy, ${ }^{31}$ F. Benmokhtar, ${ }^{10}$ A. Bianconi, ${ }^{45,22}$ L. Biondo, ${ }^{19,16,29}$ A. S. Biselli, ${ }^{11}$ M. Bondi, ${ }^{19}$ F. Bossù, ${ }^{6}$ S. Boiarinov ${ }^{42}$ W. J. Briscoe, ${ }^{15}$ W. K. Brooks, ${ }^{43}$ D. Bulumulla, ${ }^{36}$ V.D. Burkert, ${ }^{42}$ D. S. Carman, ${ }^{42}$ J. C. Carvajal, ${ }^{13}$ A. Celentano, ${ }^{19}$ P. Chatagnon, ${ }^{23}$ V. Chesnokov, ${ }^{39}$ T. Chetry, ${ }^{30}$ G. Ciullo, ${ }^{17,12}$ L. Clark, ${ }^{46}$ P. L. Cole, ${ }^{27}$ M. Contalbrigo, ${ }^{17}$ G. Costantini, ${ }^{45,22}$ V. Crede, ${ }^{14}$ A. D'Angelo, ${ }^{20,38}$ N. Dashyan, ${ }^{51}$ R. De Vita, ${ }^{19}$ M. Defurne, ${ }^{6}$ A. Deur, ${ }^{42}$ S. Diehl, ${ }^{37,8,40}$ R. Dupre, ${ }^{23}$ H. Egiyana ${ }^{42,32}$ M. Ehrhart, ${ }^{1}$ A. El Alaoui, ${ }^{43}$ L. El Fassi ${ }^{30,1}$ P. Eugenio ${ }^{14}$ G. Fedotov, ${ }^{39}$ S. Fegan, ${ }^{47}$ R. Fersch, ${ }^{7,50}$ A. Filippi, ${ }^{21}$ A. Fradi, ${ }^{23}$ G. Gavalian, ${ }^{42,36}$ F. X. Girod, ${ }^{42,6}$ D. I. Glazier, ${ }^{46}$ A. Golubenko, ${ }^{39}$ R. W. Gothe, ${ }^{40}$ K. Griffioen, ${ }^{50}$ L. Guo, ${ }^{13}$ K. Hafidi, ${ }^{1}$ H. Hakobyan,,${ }^{43,51}$ M. Hattawy, ${ }^{36}$ T. B. Hayward, ${ }^{8}$ D. Heddle, ${ }^{7,42}$ A. Hobart, ${ }^{23}$ M. Holtrop, ${ }^{32}$ Y. Ilieva, ${ }^{40}$ D. G. Ireland, ${ }^{46}$ E. L. Isupov, ${ }^{39}$ D. Jenkins, ${ }^{48}$ H. S. Jo, ${ }^{26}$ K. Joo, ${ }^{8}$ D. Keller, ${ }^{49,35}$ A. Khanal, ${ }^{13}$ M. Khandaker, ${ }^{34}$ A. Kim, ${ }^{8}$ I. Korover, ${ }^{28}$ A. Kripko, ${ }^{37}$ V. Kubarovsky, ${ }^{42}$ S. E. Kuhn, ${ }^{36}$ L. Lanza, ${ }^{20}$ M. Leali, ${ }^{4,22}$ P. Lenisa, ${ }^{7712}$ K. Livingston, ${ }^{46}$ I. J. D. MacGregor, ${ }^{46}$ D. Marchand, ${ }^{23}$ N. Markov, ${ }^{42,8}$ L. Marsicano, ${ }^{19}$ V. Mascagna, ${ }^{44,22}$ M. E. McCracken, ${ }^{4}$ B. McKinnon, ${ }^{46}$ C. McLauchlin, ${ }^{40}$ Z. E. Meziani, ${ }^{1}$ S. Migliorati, ${ }^{45,22}$ T. Mineeva, ${ }^{43,8}$ M. Mirazita, ${ }^{18}$ V. Mokeev, ${ }^{42,39}$ E. Munevar, ${ }^{15}$ C. Munoz Camacho ${ }^{23}$ P. Nadel-Turonski ${ }^{42,5} \mathrm{~K}$ Neupane ${ }^{40} \mathrm{~S}$. Niccolai ${ }^{23}$ G. Niculescu ${ }^{25}$ T. R. O'Connell ${ }^{8}$ M Osipenko ${ }^{19}$ A I Ostrovidov ${ }^{14}$
 P. Pandey ${ }^{36}$ M. Paolone, ${ }^{, 33}$ L. L. Pappalardo, ${ }^{24}$ E. Pasyuk, ${ }^{42}$ O. Pogorelko, ${ }^{31}$ Y. Prok, ${ }^{36,49}$ T. Reed, ${ }^{15}$ M. Ripani, ${ }^{40}$ Ritman, A. Rizzo, ${ }^{2}$ G. Rosner, F. Sabatie, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, U. Shrestha, ${ }^{8}$ D. Sokhan, ${ }^{46}$ O. Soto ${ }_{51}{ }^{18}$ N. Sparveris, ${ }^{41}$ I. I. Strakovsky, ${ }^{15}$ S. Strauch ${ }^{40}$ R. Tyson, ${ }^{46}$ M. Ungaro, ${ }^{42}{ }^{46}$ L. Venturelli, ${ }^{45,22}$ H. Voskanyan, ${ }^{51}$ A. Vossen, ${ }^{9,42}$ E. Voutier, ${ }^{23}$ D. P. Watts, ${ }^{47}$ K. Wei, ${ }^{8}$ X. Wei, ${ }^{42}$ R. Wishart, ${ }^{46}$ M. H. Wood, ${ }^{3,40}$ B. Yale, ${ }^{50}$ M. Yurov, ${ }^{26}$ J. Zhang, ${ }^{4,36}$ and Z. W. Zhao ${ }^{9,40}$

- So we don't quite understand YN interactions, because there’s been very few measurements historically.
- But recently there are several renewed experimental efforts to study YN scattering more precisely:

PHYSICAL REVIEW LETTERS 128, 072501 (2022)

Precise Measurement of Differential Cross Sections of the $\boldsymbol{\Sigma}^{-} \boldsymbol{p} \rightarrow$ Momentum Range 470-650 MeV/c
K. Miwa@, ${ }^{1}$ J. K. Ahn, ${ }^{2}$ Y. Akazawa, ${ }^{3}$ T. Aramaki, ${ }^{1}$ S. Ashikaga, ${ }^{4}$ S. Callier, ${ }^{5}$ N. Chiga,
P. Evtoukhovitch, ${ }^{7}$ N. Fujioka, ${ }^{1}$ M. Fujita, ${ }^{8}$ T. Gogami, ${ }^{4}$ T. Harada, ${ }^{4}$ S. Hasegawa, ${ }^{8}$ S. H
S. Hoshino, ${ }^{9}$ K. Hosomi, ${ }^{8}$ M. Ichikawa, ${ }^{4,14}$ Y. Ichikawa, ${ }^{8}$ M. Ieiri, ${ }^{3}$ M. Ikeda, ${ }^{1}$ K. Imai, ${ }^{8}$ Y ${ }^{8}$
S. Jung, ${ }^{2}$ S. Kajikawa, ${ }^{1}$ H. Kanauchi, ${ }^{1}$ H. Kanda, ${ }^{10}$ T. Kitaoka, ${ }^{1}$ B. M. Kang, ${ }^{2}$ H. Kawai, ${ }^{11}$
T. Koike, ${ }^{1}$ K. Matsuda, ${ }^{1}$ Y. Matsumoto, ${ }^{1}$ S. Nagao, ${ }^{1}$ R. Nagatomi, ${ }^{\text {, }}$ Y. Nakada, ${ }^{\text {, }}$ M. N
T. Nanamura, ${ }^{4,8}$ M. Naruki, ${ }^{4}$ S. Ozawa, ${ }^{1}$ L. Raux, ${ }^{5}$ T. G. Rogers, ${ }^{1}$ A. Sakaguchi, ${ }^{9}$ T. Sakao, ${ }^{1}$ H.
K. Shirotori, ${ }^{10}$ K. N. Suzuki, ${ }^{4}$ S. Suzuki, ${ }^{3}$ M. Tabata, ${ }^{11}$ C. d. L. Taille, ${ }^{5}$ H. Takahashi, ${ }^{3}$ T. Ta

PHYSICAL REVIEW LETTERS 127, 272303 (2021)

Improved $\Lambda \boldsymbol{p}$ Elastic Scattering Cross Sections between 0.9 and $2.0 \mathrm{GeV} / \boldsymbol{c}$ as a Main Ingredient of the Neutron Star Equation of State
J. Rowley ${ }^{35}$ N. Compton, ${ }^{35}$ C. Djalali, ${ }^{35}$ K. Hicks, ${ }^{35}$ J. Price, ${ }^{2}$ N. Zachariou, ${ }^{47}$ K. P. Adhikari, ${ }^{36}$ W. R. Armstrong, H. Atac, ${ }^{41}$ L. Baashen, ${ }^{13}$ L. Barion, ${ }^{17}$ M. Bashkanov, ${ }^{47}$ M. Battaglieri, ${ }^{42,19}$ I. Bedlinskiy, ${ }^{31}$ F. Benmokhtar, ${ }^{10}$ A. Bianconi, ${ }^{452}$ L. Biondo, ${ }^{9,16,29}$ A. S. Biselli, ${ }^{11}$ M. Bondi, ${ }^{19}$ F. Bossù, ${ }^{6}$ S. Boiarinovo ${ }^{42}$ W. J. Briscoe, ${ }^{1,5}$ W. K. Brooks, ${ }^{4,3}$ D. Bulumulla, ${ }^{36}$ V.D. Burkert, ${ }^{42}$ D. S. Carman ${ }^{42}$ J. C. Carvajal, ${ }^{13}$ A. Celentano, ${ }^{19}$ P. Chatagnon, ${ }^{23}$ V. Chesnokov ${ }^{39}{ }^{39}$ T. Chetry, ${ }_{5}^{30}$ G. Ciullo ${ }^{17,12}$ L. Clark, ${ }^{46}$ P. L. Cole, ${ }^{27}$ M. Contalarigo, ${ }^{17}$ G. Costantini, ${ }^{45,52}$ V. Crede, ${ }^{14}$ A. D'Angelo, ${ }^{20,38}$ N. Dashyan, ${ }^{51}$ R. De Vita, ${ }^{19}$ M. Defurne, ${ }^{6}$ A. Deur ${ }^{42}$ S. Diehl ${ }^{37,8,40}$ R. Dupre ${ }^{23}$ H. Egiyan, ${ }^{42,23}$ M. Ehrhart, ${ }^{1}$ A. El Alaoui, ${ }^{43}$ L. El Fassi, 30,1 P. Eugenio, ${ }^{14}$ G. Fedotov, ${ }^{3,{ }^{3}}$ S. Fegan, ${ }^{47}$ R. Fersch, ${ }^{75}$ A. Filippi, ${ }^{21}$ A. Fradi, ${ }^{23}$ G. Gavalian, ${ }^{423}$ F. X. Girod, ${ }^{426}$ D. I. Glazier, ${ }^{46}$ A. Golubenko,${ }^{39}$ R. W. Gothe, ${ }^{40}$ K. Griffioen, ${ }^{50}$ L. Guo, ${ }^{31}$ K. Hafidi, ${ }^{1}$ H. Hakobyan, ${ }^{43,59}$ M. Hattawy, ${ }^{36}$ T. B. Hayward, ${ }^{8}$ D. Heddle, ${ }^{7,42}$ A. Hobart, ${ }^{23}$ M. Holtrop, ${ }^{32}$ Y. Ilieva, ${ }^{40}$ D. G. Ireland, ${ }^{46}$ E. L. Isupov, ${ }^{39}$ D. Jenkins, ${ }^{48}$ H. S. Jo, ${ }^{26}$ K. Joo, ${ }^{8}$ D. Keller, ${ }^{4935}$ A. Khanal, ${ }^{13}$ M. Khandaker, ${ }^{34}$ A. Kim, ${ }^{8}$ I. Korover, ${ }^{28}$ A. Kripko, ${ }^{3,}$ V. Kubarovsky, ${ }^{42}$ S. E. Kuhn, ${ }^{36}$ L. Lanza, ${ }^{20}$ M. Leali, ${ }^{4,22}$ P. Lenisa, ${ }^{17,12}$ K. Livingston, ${ }^{46}$ I J. D. MacGregor, ${ }^{46}$ D. Marchand, ${ }^{23}$ N. Markov, ${ }^{42,8}$ L. Marsicano, ${ }^{19}$ V. Mascagna, ${ }^{44,22}$ M. E. McCracken, ${ }^{4}$ B. McKinnon, ${ }^{46}$ C. McLauchlin ${ }^{40}$
H. Tamura, ${ }^{1, \mathrm{~s}}$

Physics Letters B 805 (2020) 135419

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Investigation of the $\mathrm{p}-\Sigma^{0}$ interaction via femtoscopy in pp collisions
ALICE Collaboration*

On the theoretical side, there's been continuous efforts to understand NN, YN and YY interactions. Three major approaches are

- Meson-exchange Potential models (Nijmegen and Julich potentials)
- the Chiral Effective Field Theory (xEFT)
- Lattice QCD simulations

On the theoretical side, there's been continuous efforts to understand NN, YN and YY interactions. Three major approaches are

- Meson-exchange Potential models (Nijmegen and Julich potentials)
- the Chiral Effective Field Theory (xEFT)
- Lattice QCD simulations

The underlying organizing principle is the $\mathrm{SU}(3)$ flavor symmetry:

Particle	Experimental mass (MeV)
P	938.26
N	939.55
Λ	1115.6
Σ^{+}	1189.4
Σ^{0}	1192.5
Σ^{-}	1197.3
Ξ^{0}	1314.7
Ξ^{-}	1321.3

On the theoretical side, there's been continuous efforts to understand NN, YN and YY interactions. Three major approaches are

- Meson-exchange Potential models (Nijmegen and Julich potentials)
- the Chiral Effective Field Theory (xEFT)
- Lattice QCD simulations

The underlying organizing principle is the $\mathrm{SU}(3)$ flavor symmetry:

Particle	Experimental mass (MeV)
P	938.26
N	939.55
Λ	1115.6
Σ^{+}	1189.4
Σ^{0}	1192.5
Σ^{-}	1197.3
Ξ^{0}	1314.7
Ξ^{-}	1321.3

A major challenge: How to best incorporate SU(3) breaking effects amid constraints from the NN sector?

Parallel to the new experimental efforts, there's a new approach to understand nuclear dynamics from the quantum information-theoretic perspective:

PHYSICAL REVIEW LETTERS 122, 102001 (2019)

Entanglement Suppression and Emergent Symmetries of Strong Interactions

> Silas R. Beane, ${ }^{1}$ David B. Kaplan, ${ }^{2}$ Natalie Klco, ${ }^{1,2}$ and Martin J. Savage ${ }^{2}$
> ${ }^{1}$ Department of Physics, University of Washington, Seattle, Washington $98195-1560$, USA
> ${ }^{2}$ Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA
> (⿴) (Received 20 December 2018; published 14 March 2019)
> Entanglement suppression in the strong-interaction S matrix is shown to be correlated with approximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner $S U(4)$ symmetry for two flavors and an $S U(16)$ symmetry for three flavors. We conjecture that

This raises the intriguing possibility of understanding nuclear interactions and the associated emergent symmetries from quantum entanglement!

Entanglement is quantum world's most prominent feature:

- It refers to the situation where a measurement on a subsystem will improve our knowledge on the rest of the system.
- A quantum state of a system is entangled if it cannot be written as a tensor-product state of its subsystems.
- Consider a bipartite system $\mathcal{H}_{12}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$, a state vector $|\psi\rangle \in \mathcal{H}_{12}$ is entangled if there is NO $\left|\psi_{1}\right\rangle \in \mathcal{H}_{1}$ and $\left|\psi_{2}\right\rangle \in \mathcal{H}_{2}$ such that

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle
$$

To quantify the amount of entanglement, we need entanglement measure.

Many possibilities for Entanglement Measure. For bipartite systems:
von Neumann entropy:

Linear entropy:

$$
\rho=|\psi\rangle\langle\psi|
$$

$$
\rho_{1 / 2}=\operatorname{Tr}_{2 / 1}(\rho)
$$

The common property is that the entanglement measure vanishes for a product state $|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$, but attains the maximum for maximally entangled states (such as the Bell states.)

Entanglement is a property of the quantum state. But we are more interested in the ability of a quantum-mechanical operator (i.e. the Smatrix) to entangle.

Entanglement is a property of the quantum state. But we are more interested in the ability of a quantum-mechanical operator (i.e. the Smatrix) to entangle.

The "entanglement power" deals with this issue is by averaging over the initial states:

$$
E(U)=\overline{E\left(U\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle\right)}
$$

It is a measure of the ability of an operator U to generate entanglement on product states.

Entanglement is a property of the quantum state. But we are more interested in the ability of a quantum-mechanical operator (i.e. the Smatrix) to entangle.

The "entanglement power" deals with this issue is by averaging over the initial states:

$$
E(U)=\overline{E\left(U\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle\right)}
$$

It is a measure of the ability of an operator U to generate entanglement on product states.

A minimally entangling operator has $E(U)=0$, i.e.,

$$
\rangle \otimes|\rangle \xrightarrow{U}\rangle \otimes|\rangle
$$

Two operators have the same entanglement power if they differ by single-qubit operations:

$$
U \sim U^{\prime} \quad \text { if } \quad U=\left(U_{1} \otimes U_{2}\right) U^{\prime}\left(V_{1} \otimes V_{2}\right)
$$

Using these tools, the Seattle group found the S-matrix in NN scattering tends to minimize entanglement in the far infrared region with the nucleons as fundamental degrees of freedom:

Using these tools, the Seattle group found the S-matrix in NN scattering tends to minimize entanglement in the far infrared region with the nucleons as fundamental degrees of freedom:

arXiv:1812.03138

Moreover, regions of entanglement suppression coincides with the appearance of emergent symmetries such as the spin-flavor symmetry and the non-relativistic conformal invariance:

$$
\begin{gathered}
\mathcal{L}_{6}=-\frac{1}{2} C_{S}\left(N^{\dagger} N\right)^{2}-\frac{1}{2} C_{T}\left(N^{\dagger} \vec{\sigma} N\right)^{2} \\
{ }^{1} S_{0}: \quad \bar{C}_{0}=\left(C_{S}-3 C_{T}\right) \\
{ }^{3} S_{1}: \\
\bar{C}_{1}=\left(C_{S}+C_{T}\right)
\end{gathered}
$$

$$
\mathcal{E}(\hat{\mathbf{S}})=\frac{1}{6} \sin ^{2}\left(2\left(\delta_{1}-\delta_{0}\right)\right)
$$

Emergent symmetries in NN scattering:

- Schrodinger symmetry (non-relativistic conformal invariance)

The largest symmetry group preserved by the Schrodinger equation, which includes Galilean boosts, scale and special conformal transformations.

- Spin-flavor symmetries

Symmetries mixing flavor (internal) with spin (spacetime).
Examples: $\mathrm{SU}\left(2 \mathrm{~N}_{\mathrm{f}}\right)$ quark spin-flavor symmetries;
Wigner's "supermultiplet" SU(4) spin-flavor symmetry:

$$
N=\left(\begin{array}{l}
p \uparrow \\
p \downarrow \\
n \uparrow \\
n \downarrow
\end{array}\right)
$$

We would like to stuy the information-theoretic property of the S-matrix. In the scattering process the S-matrix acts on the IN-state:

$$
\mid \text { out }\rangle=S \mid \text { in }\rangle
$$

For 2-to-2 scattering of spin-1/2 fermions, the S-matrix can be viewed as a quantum logic gate acting on the spin-space:

It turns out that, modulo the equivalent class, there are two and only two minimally entangling operators,

$$
\mathbf{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \mathrm{SWAP}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Identity gate: do nothing.

SWAP gate: interchange the qubits.

$$
\mathrm{SWAP} \sim-1 \quad \text { as } \quad[\mathrm{SWAP}]^{2}=1
$$

In terms of Pauli matrices,

$$
\mathrm{SWAP}=(1+\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}) / 2, \quad \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} \equiv \sum_{a} \boldsymbol{\sigma}^{a} \otimes \boldsymbol{\sigma}^{a}
$$

Consider the scattering of two qubits, Alice and Bob, in the low-energy:

- Only the s-wave channel dominates.
- The S-matrix can be decomposed into ${ }^{1} S_{0}$ and ${ }^{3} S_{1}$ channels \rightarrow there are two phase shifts: δ_{0} and δ_{1}, respectively.
- Rotational invariance and Unitarity then uniquely fix the S-matrix:

In terms of quantum logic gates,

$$
S=\frac{1}{2}\left(e^{2 i \delta_{1}}+e^{2 i \delta_{0}}\right) \mathbf{1}+\frac{1}{2}\left(e^{2 i \delta_{1}}-e^{2 i \delta_{0}}\right) \text { SWAP }
$$

Conditions for the S-matrix to minimize entanglement: 1. $S=1$ if $\delta_{0}=\delta_{1} \quad \mathrm{SU}(4)$ or $\mathrm{SU}(16)$ spin-flavor sym.
2. $S=S W A P$ if $\left|\delta_{0}-\delta_{1}\right|=\pi / 2 \longrightarrow$ Schrodinger sym.

In terms of quantum logic gates,

$$
S=\frac{1}{2}\left(e^{2 i \delta_{1}}+e^{2 i \delta_{0}}\right) \mathbf{1}+\frac{1}{2}\left(e^{2 i \delta_{1}}-e^{2 i \delta_{0}}\right) \mathrm{SWAP}
$$

Conditions for the S-matrix to minimize entanglement: 1. $S=1$ if $\delta_{0}=\delta_{1} \quad \mathrm{SU}(4)$ or $\mathrm{SU}(16)$ spin-flavor sym.
2. $S=S W A P$ if $\left|\delta_{0}-\delta_{1}\right|=\pi / 2 \longrightarrow$ Schrodinger sym.

The appearance of emergent symmetries in NN scattering is a consequence of the S -matrix minimizing entanglement!

- Nucleons are part of spin-1/2 octet baryons:

In the SU(3) flavor-symmetric limit :

$$
B=\left(\begin{array}{ccc}
\Sigma^{0} / \sqrt{2}+\Lambda / \sqrt{6} & \Sigma^{+} & p \\
\Sigma^{-} & -\Sigma^{0} / \sqrt{2}+\Lambda / \sqrt{6} & n \\
\Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}} \Lambda
\end{array}\right)
$$

A low-energy effective field theory:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LO}}^{n_{f}=3}= & -\frac{c_{1}}{f^{2}}\left\langle B_{i}^{\dagger} B_{i} B_{j}^{\dagger} B_{j}\right\rangle-\frac{c_{2}}{f^{2}}\left\langle B_{i}^{\dagger} B_{j} B_{j}^{\dagger} B_{i}\right\rangle-\frac{c_{3}}{f^{2}}\left\langle B_{i}^{\dagger} B_{j}^{\dagger} B_{i} B_{j}\right\rangle-\frac{c_{4}}{f^{2}}\left\langle B_{i}^{\dagger} B_{j}^{\dagger} B_{j} B_{i}\right\rangle \\
& -\frac{c_{5}}{f^{2}}\left\langle B_{i}^{\dagger} B_{i}\right\rangle\left\langle B_{j}^{\dagger} B_{j}\right\rangle-\frac{c_{6}}{f^{2}}\left\langle B_{i}^{\dagger} B_{j}\right\rangle\left\langle B_{j}^{\dagger} B_{i}\right\rangle, \quad i, j=\uparrow, \downarrow \quad \text { Savage, Wise (1995) }
\end{aligned}
$$

Lattice QCD could compute the six Wilson coefficients under some special circumstances:

INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076

Baryon-Baryon Interactions and Spin-Flavor Symmetry from Lattice Quantum Chromodynamics

Michael L. Wagman, ${ }^{1,2}$ Frank Winter, ${ }^{3}$ Emmanuel Chang, Zohreh Davoudi, ${ }^{4}$ William Detmold, ${ }^{4}$ Kostas Orginos, ${ }^{5,3}$ Martin J. Savage, ${ }^{1,2}$ and Phiala E. Shanahan ${ }^{4}$ (NPLQCD Collaboration)

In the limit where all coefficients but c_{5} are vanishing:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LO}}^{n_{f}=3}= & \left.-\frac{c_{1}}{f^{2}}\left\langle B_{i}^{\dagger} B_{i} B_{j}\right\rangle B_{j}\right\rangle-\frac{c_{2}}{f^{2}}\left\langle B_{i}^{\dagger} B_{\langle } B_{j}^{\dagger} B_{i}\right\rangle-\frac{c_{3}}{f^{2}}\left\langle B_{i}^{\dagger} B_{i}^{\dagger} B_{i} B_{j}\right\rangle-\frac{c_{4}}{f^{2}}\left\langle B_{i}^{\dagger} B\left\langle B_{j} B_{i}\right\rangle\right. \\
& -\frac{c_{5}}{f^{2}}\left\langle B_{i}^{\dagger} B_{i}\right\rangle\left\langle B_{j}^{\dagger} B_{j}\right\rangle-\frac{c_{6}}{f^{2}}\left\langle B_{i}^{\dagger} B_{j}\right\rangle\left\langle\dot{B}_{j}^{\dagger} B_{i}\right\rangle, \quad i, j=\uparrow, \downarrow
\end{aligned}
$$

The remaining operator can be re-written,

$$
\mathcal{B}=\left(n_{\uparrow}, n_{\downarrow}, p_{\uparrow}, p_{\downarrow}, \ldots\right), \quad \mathcal{L}=-c_{5}\left(\mathcal{B}^{\dagger} \mathcal{B}\right)^{2}
$$

which is invariant under an $\operatorname{SU}(16)$ spin-flavor symmetry

$$
U=16 \times 16
$$

$$
\mathcal{B} \rightarrow U \mathcal{B}, \quad U^{\dagger} U=1
$$

There is no large N_{c} explanation!

Let's extend the analysis to other spin-1/2 baryons, which have a rich theoretical structure and phenomenology:
-- A total $8 \times 8=64$ scattering channels. Assuming $S U(3)$ flavor:

$$
\mathbf{8} \otimes \mathbf{8}=\mathbf{2 7} \oplus \mathbf{8}_{S} \oplus \mathbf{1} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus \mathbf{8}_{A}
$$

-- Strong interaction preserves charge (Q) and strangeness (S)
\rightarrow Classify the scattering channel into sectors with definitive $(Q$, S).

	Q	S		Q	S		Q	S
$n n$	0	0	$\Sigma^{-} \Sigma^{-}$	-2	-2	$\Sigma^{-} \Xi^{-}$	-2	-3
$n p$	1	0	$\Sigma^{-} \Lambda$			$\Sigma^{-} \Xi^{0}$		
$p p$	2	0	$\Sigma^{-} \Sigma^{0}$	-1	-2	$\Xi^{-} \Sigma^{0}$	-1	-3
$n \Sigma^{-}$	-1	-1	$n \Xi^{-}$			$\Xi^{-} \Lambda$		
$n \Lambda$			$\Sigma^{+} \Sigma^{-}$	0	-2	$\Xi^{-} \Sigma^{+}$		
$n \Sigma^{0}$	0	-1	$\Sigma^{0} \Sigma^{0}$			$\Xi^{0} \Lambda$	0	-3
$p \Sigma^{-}$			$\Lambda \Sigma^{0}$			$\Xi^{0} \Sigma^{0}$		
$p \Lambda$	1	-1	$\Lambda \Lambda$			$\Xi^{0} \Sigma^{+}$	1	-3
$p \Sigma^{0}$			$n \Xi^{0}$			$\Xi^{-} \Xi^{-}$	-2	-4
$n \Sigma^{+}$			$p \Xi^{-}$			$\Xi^{-} \Xi^{0}$	-1	-4
$p \Sigma^{+}$	2	-1	$\Sigma^{+} \Lambda$	1	-2	$\Xi^{0} \Xi^{0}$	0	-4
$\begin{gathered} \Sigma^{+} \Sigma^{0} \\ p \Xi^{0} \\ \hline \Sigma^{+} \Sigma^{+} \\ \hline \end{gathered}$								
				2	-2			

The S-matrix is block-diagonal among different (Q, S) sectors.
Liu, Low, Mehen: 2210.12085

1-d sector		Q	S		Q	S		Q	S
	$n n$	0	0	$\Sigma^{-} \Sigma^{-}$	-2	-2	$\Sigma^{-} \Xi^{-}$	-2	-3
	$n p$	1	0	$\Sigma^{-} \Lambda$	-1	-2	$\Sigma^{-} \Xi^{0}$	-1	-3
	$p p$	2	0	$\Sigma^{-} \Sigma^{0}$			$\Xi^{-} \Sigma^{0}$		
	$n \Sigma^{-}$	-1	-1	$n \Xi^{-}$			$\Xi^{-} \Lambda$		
	$n \Lambda$	0	-1	$\Sigma^{+} \Sigma^{-}$	0	-2	$\Xi^{-} \Sigma^{+}$		
	$n \Sigma^{0}$			$\Sigma^{0} \Sigma^{0}$			$\Xi^{0} \Lambda$	0	-3
	$p \Sigma^{-}$			$\Lambda \Sigma^{0}$			$\Xi^{0} \Sigma^{0}$		
	$p \Lambda$	1	-1	$\Lambda \Lambda$			$\Xi^{0} \Sigma^{+}$	1	-3
	$p \Sigma^{0}$			$n \Xi^{0}$			$\Xi^{-} \Xi^{-}$	-2	-4
	$n \Sigma^{+}$			$p \Xi^{-}$			$\Xi^{-} \Xi^{0}$	-1	-4
	$p \Sigma^{+}$	2	-1	$\begin{gathered} \Sigma^{+} \Lambda \\ \Sigma^{+} \Sigma^{0} \\ p \Xi^{0} \end{gathered}$	1	-2	$\Xi^{0} \Xi^{0}$	0	-4
				$\Sigma^{+} \Sigma^{+}$	2	-2			

The S-matrix is block-diagonal among different (Q, S) sectors.
Liu, Low, Mehen: 2210.12085

The S-matrix is block-diagonal among different (Q, S) sectors.
Liu, Low, Mehen: 2210.12085

6-d sector		Q	S		Q	S		Q	S
	$n n$	0	0	$\Sigma^{-} \Sigma^{-}$	-2	-2	$\Sigma^{-} \Xi^{-}$	-2	-3
	$n p$	1	0	$\Sigma^{-} \Lambda$	-1	-2	$\Sigma^{-} \Xi^{0}$	-1	-3
	$p p$	2	0	$\Sigma^{-} \Sigma^{0}$			$\Xi^{-} \Sigma^{0}$		
	$n \Sigma^{-}$	-1	-1	$n \Xi^{-}$			$\Xi^{-} \Lambda$		
	$n \Lambda$	0	-1	$\overline{\Sigma^{+} \Sigma^{-}}$	0	-2	$\Xi^{-} \Sigma^{+}$		
	$n \Sigma^{0}$			$\Sigma^{0} \Sigma^{0}$			$\Xi^{0} \Lambda$	0	-3
	$p \Sigma^{-}$			$\Lambda \Sigma^{0}$			$\Xi^{0} \Sigma^{0}$		
	$p \Lambda$	1	-1	$\Lambda \Lambda$			$\Xi^{0} \Sigma^{+}$	1	-3
	$p \Sigma^{0}$			$n \Xi^{0}$			$\Xi^{-} \Xi^{-}$	-2	-4
	$n \Sigma^{+}$			$-p \Xi^{-}$			$\Xi^{-} \Xi^{0}$	-1	-4
	$p \Sigma^{+}$	2	-1	$\Sigma^{+} \Lambda$	1	-2	$\Xi^{0} \Xi^{0}$	0	-4
				$\begin{gathered} \Sigma^{+} \Sigma^{0} \\ p \Xi^{0} \end{gathered}$					
				$\Sigma^{+} \Sigma^{+}$	2	-2			

The S-matrix is block-diagonal among different (Q, S) sectors.
Liu, Low, Mehen: 2210.12085

We are able to obtain conditions on the scattering phases under which each (Q, S) sector is minimally entangled:

TABLE III. Conditions in each flavor sector for the S-matrix to be minimally entangling. An Identity gate is achieved when all the phases are equal, while a SWAP gate is when the phases differ by $\pi / 2$.

A summary table on possible emerging symmetries:

Flavor Subspace	Symmetry of Lagrangian
$n p$	$S U(6)$ spin-flavor symmetry
$\Sigma^{-} \Xi^{-}$	or conformal symmetry in $\mathbf{2 7}$ and $\overline{\mathbf{1 0}}$ irrep channels
$\Sigma^{+} \Xi^{0}$	conjugate of $S U(6)$ spin-flavor symmetry
$n \Sigma^{-}$	or conformal symmetry in $\mathbf{2 7}$ and $\mathbf{1 0}$ irrep channels
$p \Sigma^{+}$	
$\Xi^{-} \Xi^{0}$	$S O(8)$ flavor symmetry
$\left(n \Lambda, p \Sigma^{0}, n \Sigma^{+}\right)$	$\left.n, n \Sigma^{0}, p \Sigma^{-}\right)$
$\left(\Sigma^{-} \Lambda, \Sigma^{-} \Sigma^{0}, n \Xi^{-}\right)$	or conformal symmetry in $\mathbf{2 7}, \mathbf{8}_{\boldsymbol{S}}, \mathbf{8}_{\boldsymbol{A}}, \mathbf{1 0}$ and $\overline{\mathbf{1 0}}$
$\left(\Sigma^{+} \Lambda, \Sigma^{+} \Sigma^{0}, p \Xi^{0}\right)$	
$\left(\Sigma^{-} \Xi^{0}, \Xi^{-} \Sigma^{0}, \Xi^{-} \Sigma^{0}\right)$	irrep channels
$\left(\Xi^{-} \Sigma^{+}, \Xi^{0} \Lambda, \Xi^{0} \Sigma^{0}\right)$	$S U(16)$ symmetry
$\left(\Sigma^{+} \Sigma^{-}, \Sigma^{0} \Sigma^{0}, \Lambda \Sigma^{0}, \Xi^{-} p, \Xi^{0} n, \Lambda \Lambda\right)$	or $S U(8)$ and conformal symmetry

TABLE V. Symmetries predicted by entanglement minimization in each flavor sector.

What does the data say?

- It turns out there are global fits of scattering phases using YN data, based on the meson-exchange potential models and xEFT.
- E40 collaboration at J-PARC also fitted the scattering phases in (Sigma+, p) scattering:

Fig. 28. Obtained phase shifts $\delta_{3_{S_{1}}}$ and $\delta_{1_{1}}$ as a function of the incident momentum. The black dashed, green solid, and blue dotted lines represent the calculated phase shifts of ESC16 [16], NSC97f [8], and fss2 [6], respectively.

- It turns out there are global fits of scattering phases using YN data, based on the meson-exchange potential models and xEFT.
- E40 collaboration at J-PARC also fitted the scattering phases in (Sigma+, p) scattering:

We considered the $S=-1$ hyperons:

Q	-1	0	1	2
Flavor	$\Sigma^{-} n$	$\Lambda n, \Sigma^{0} n, \Sigma^{-} p$	$\Lambda p, \Sigma^{0} p, \Sigma^{+} n$	$\Sigma^{+} p$
Total	2137	$\Lambda n: 2055$	$\Lambda p: 2054$	2128
Mass (MeV)		$\Sigma^{0} n: 2132$	$\Sigma^{+} n: 2129$	
		$\Sigma^{-} p: 2136$	$\Sigma^{0} p: 2131$	

We considered the $S=-1$

 hyperons:| Q | -1 | 0 | 1 | 2 |
| :--- | :---: | :---: | :---: | :---: |
| Flavor | $\Sigma^{-} n$ | $\Lambda n, \Sigma^{0} n, \Sigma^{-} p$ | $\Lambda p, \Sigma^{0} p, \Sigma^{+} n$ | $\Sigma^{+} p$ |
| Total | 2137 | $\Lambda n: 2055$ | $\Lambda p: 2054$ | 2128 |
| Mass (MeV) | | $\Sigma^{0} n: 2132$ | $\Sigma^{+} n: 2129$ | |
| | | $\Sigma^{-} p: 2136$ | $\Sigma^{0} p: 2131$ | |

Entanglement power in $\wedge \mathrm{p}$ scattering

We stay below the pion production Threshold:

Pion production process	$p_{C M}(\mathrm{MeV} / \mathrm{c})$	$p_{\text {lab }}(\mathrm{MeV} / \mathrm{c})$
$\Lambda n \rightarrow \Lambda p \pi^{-}$	382.8	893.9
$\Sigma^{+} p \rightarrow \Sigma^{+} n \pi^{+}$	390.3	943.4

Reall (Lambda, p) and (Lambda, n) are related by isospin invariance. They share similar features.
Q. Liu and IL: 2312.02289

The same observation apply to (Sigma-,p), (Sigma0, p) as well as their isospin partners (Sigma+,n) and(Sigma0,n):

One outlier is (Sigma+, p) channel, where differing global fits give different results:

Q. Liu and IL: 2312.02289

One outlier is (Sigma+, p) channel, where differing global fits give different results:

Q. Liu and IL: 2312.02289

One outlier is (Sigma+, p) channel, where differing global fits give different results:

Q. Liu and IL: 2312.02289

For (Lambda+, p), we proposed a "quantum observable" which could break the degeneracy among different global fits:

FIG. 4. Predicted polarizations of the recoiling Σ^{+}(recoil) and the recoiling p (target) in $\Sigma^{+} p$ scattering, assuming an unpolarized proton target and a 25\% polarized hyperon beam.

Outlook

- QIS provides new tools and perspectives to understand nuclear dynamics.
- In the NN sector, emergent symmetries can be viewed as consequences of entanglement suppression.
- Existing global fits on YN scattering provide hints of entanglement suppression. Need more data!
- New "Quantum Observables" could provide insights into the long-standing hyperon puzzle.

