Li₂(1) Li₂(

Imaging Intrinsic and Emergent Scales of the QGP

Ian Moult Yale

Jet Substructure!

Jet Substructure

• Jet substructure has emerged as a central new technique at colliders:

Innovative Search Techniques

Novel Probes of QCD Dynamics

• Has evolved well beyond its origin to have a large impact on BSM, SM, high energy QCD and nuclear physics.

Decoding Energy Flux: QGP

• Subtle questions about the QGP are imprinted in collider energy flux:

 Requires development of field theoretic techniques to interpret correlations in terms of the dynamics of the underlying field theory.

Outline

• Decoding Energy Flux

• Scaling Behavior of Quarks and Gluons

 Imaging Intrinsic and Emergent Scales of the QGP

Decoding Energy Flux

Observables

• Observables are the link between theory and experiment: We want to make this link as direct as possible.

$$\langle \mathcal{O} \rangle = \langle \Psi | \mathcal{O} | \Psi \rangle$$

- As we move to studying more subtle features, we need to sharpen this link.
- Correctly choosing observables facilitates the experiment \leftrightarrow theory link.

Decoding Energy Flux

 In condensed matter physics or cosmology we decode the underlying dynamics using correlation functions.

• What is the analog for collider physics?

Defining the Problem

• What is a detector?

 To be able to understand subtle signals in energy flux, we must understand what a detector is in Quantum Field Theory.

Calorimeter Cells in Field Theory

 Calorimeter cells can be given a field theoretic definition in terms of light-ray operators. [Hofman, Maldacena] [Korchemsky, Sterman]

 Provides a sharp link between experimentally measurable observables and the underlying QFT.

Energy Correlators: Reality

Figure: Wenqing Fan

Energy Correlators: Reality

See talk by Ananya Rai on realities of vacuum measurement.

• See talk by Jussi Viinikainen on realities of heavy ion measurement.

Scaling Behavior of Quarks and Gluons

Scaling Behavior in QFT

• Scaling behavior in Euclidean regime well understood.

λ -point of Helium

The OPE Limit of Lightray Operators

• Energy flow operators admit a Lorentzian OPE: "the lightray OPE"

[Hofman, Maldacena]

[Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]

- Predicts universal scaling behavior in correlations of energy flux at energies $E\gg \Lambda_{\rm QCD}$.

Scaling Behavior in Jets

Andrew Tamis, Ananya Rai.

• The $\mathcal{E}(\hat{n}_1)\mathcal{E}(\hat{n}_2)$ OPE inside high-energy jets!

• Dominated by classical scaling. Can we accurately measure anomalous scaling?

The Spectrum of a Jet

ullet The light-ray OPE predicts that the N-point correlators develop an anomalous scaling that depends on N.

• Directly probes the spectrum of (twist-2) lightray operators from asymptotic energy flux.

Anomalous Scaling of 3/2 Ratio

Anomalous scaling measured from 15 GeV to 1784 GeV!

$$\frac{\langle \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_3 \rangle}{\langle \mathcal{E}_1 \mathcal{E}_2 \rangle} \sim \frac{\langle \mathbb{O}^{[3]} \rangle}{\langle \mathbb{O}^{[3]} \rangle} \sim R_L^{\gamma(4) - \gamma(3)}$$

Winter Workshop 2024

The Strong Coupling

• Proof of principle α_s can be extracted from jet substructure in complicated hadron collider environment: 4% accuracy.

• Hope to use high energies of the LHC to resolve previous tensions in α_s extractions.

Davier 2014 T decays low Q2 Boito 2018 PDG 2018 Mateu 2018 bound state Peset 2018 BBG06 JR14 MMHT14 ABMP16 PDE fits NNPDF31 ALEPH (i&s) OPAL (j&s) IADE (i&s) Dissertori (3i) IADE (31) jets /erbytskyi (2) ardos (EEC) shapes foang (C) Klijnsma (tř) hadron CMS (tř) collider H1 (jets)

electroweak

lattice

0.125 0.130 α_e(M²_e)

PDG 2018

August 2019

Gfitter 2018

$$\alpha_s(m_Z) = 0.1229^{+0.0040}_{-0.0050}$$

 $= 0.1229^{+0.0014(stat.)+0.0030(theo.)+0.0023(exp.)}_{-0.0012(stat.)-0.0033(theo.)-0.0036(exp.)}$

Energy Correlators in Data

• A milestone in connecting jet substructure with QFT!

• Can we image how the QGP modifies the correlators?

Imaging Emergent and Intrinsic Scales of QCD

 Understanding of jets in vacuum allows them to be used as well calibrated probes in more complicated systems: hot and cold nuclear

Resolving the Scales of the QGP: Static Medium

- The QGP introduces a number of new scales into the problem.
- Consider first a static medium.
- We will focus on one scale, $\theta_L \sim \frac{1}{\sqrt{LE}}$, which determines the angle at which splittings resolve the medium

Resolving the Scales of the QGP: Static Medium

• QGP scales cleanly imprinted in two-point correlation.

Resolving the Scales of the QGP: Full Simulation

- Perform full simulation in CoLBT. [X.N. Wang et al.]
- Enhanced at large angles from both medium response and bremstrahlung. Suppressed at small angles by energy loss and momentum broadening. [Yang, He, Moult, Wang]

• Sensitivity to the Debye screening mass $\mu_D^2 = \frac{3}{2}Kg^2T^2$: Probe short

Non-Gaussianities in Energy Flux

Non-Gaussianities

- Higher-point correlators probe more detailed aspects of interactions.
- e.g. Non-Gaussianities allow one to distinguish models of inflation.

• What is the structure of higher-point functions of energy flux?

Shape Dependence of Non-Gaussianities: Vacuum

• Can directly study non-gaussianities inside high energy jets.

• Illustrates theoretical control over multi-point correlations!

- Higher point correlators allow us to probe the "shape" of modifications from the QGP: unravel different physical effects
- Illustrate by imaging the wake in the hybrid model.

Vacuum

Increasing $R_{\rm L}$

- Higher point correlators allow us to probe the "shape" of modifications from the QGP: unravel different physical effects
- Illustrate by imaging the wake in the hybrid model.

Increasing $R_{\rm L}$

- Higher point correlators allow us to probe the "shape" of modifications from the QGP: unravel different physical effects
- Illustrate by imaging the wake in the hybrid model.

- Higher point correlators allow us to probe the "shape" of modifications from the QGP: unravel different physical effects
- Illustrate by imaging the wake in the hybrid model.

[Bossi, He, Kudinoor, Moult, Pablos, Rai, Rajagopal]

- Higher point correlators allow us to probe the "shape" of modifications from the QGP: unravel different physical effects
- Illustrate by imaging the wake in the hybrid model.

[Bossi, He, Kudinoor, Moult, Pablos, Rai, Rajagopal]

- Higher point correlators allow us to probe the "shape" of modifications from the QGP: unravel different physical effects
- Illustrate by imaging the wake in the hybrid model.

[Bossi, He, Kudinoor, Moult, Pablos, Rai, Rajagopal]

Energy Correlators in Data

 Measurement of energy correlators in heavy ion will be a milestone in bridging collider measurements with the underlying QFT description of the QGP!

DATA?

• Will provide a direct measurement of this fundamental quantity in a finite temperature non-abelian gauge theory!

Summary

- Correlation functions, $\langle \mathcal{E}(n_1)\cdots\mathcal{E}(n_k)\rangle$, provide a sharp link between theory and experiment. And can now be directly measured.
- Intrinsic and emergent scales imprint themselves in correlation functions at characteristic scales.

 Energy correlators provide a unique new tool to unravel the microscopic structure of the QGP.

