

Experimental determination of energy-energy correlators in heavy ion collisions

Jussi Viinikainen

Winter Workshop on Nuclear Dynamics 2024

2 Dealing with background in heavy ion environment

1 Introduction to energy-energy correlators

2 Dealing with background in heavy ion environment

3) Simple energy-loss model with Pythia8

3/27

• A two-point energy correlator can be defined as

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\theta} = \int \mathrm{d}\vec{n}_{1,2} \frac{\langle \epsilon(\vec{n}_1)\epsilon(\vec{n}_2) \rangle}{Q^2} \delta^2(\vec{n}_1 \cdot \vec{n}_2 - \cos(\theta))$$

where $\epsilon(\vec{n_i})$ measures the asymptotic energy flux in the direction $\vec{n_i}$, θ is the angle between $\vec{n_1}$ and $\vec{n_2}$, and Q is the hard scale

- Energy-energy correlators are predicted to be sensitive to several phenomena in heavy-ion collisions:
 - Color coherence: PRL 130 (2023) 262301, JHEP 09 (2023) 088
 - Jet wake: PRL 132 (2024) 011901
 - Dead cone: arXiv:2307.15110
 - Anisotropic jet shapes: arXiv:2308.01294

• . . .

Experimental definition of energy-energy correlator

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\theta} = \int \mathrm{d}\vec{n}_{1,2} \frac{\langle \epsilon(\vec{n}_1)\epsilon(\vec{n}_2) \rangle}{Q^2} \delta^2(\vec{n}_1 \cdot \vec{n}_2 - \cos(\theta))$$

$$\mathsf{EEC}(\Delta r) = C_{\mathsf{norm}} \sum_{\mathsf{jets} \in [\boldsymbol{p}_{\mathrm{T},1}, \boldsymbol{p}_{\mathrm{T},2}]} \sum_{\mathsf{pairs}} \frac{\boldsymbol{p}_{\mathrm{T},i} \, \boldsymbol{p}_{\mathrm{T},j}}{\boldsymbol{p}_{\mathrm{T},\mathsf{jet}}^2} \, \Delta r_{i,j}$$

- $C_{norm} = Normalization factor$
- $p_{T,i} p_{T,j}$ = Particle transverse momentum
- $p_{T,jet} = Jet transverse momentum$
- $\Delta r_{i,j} = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$ = Angular distance between particles

Energy-energy correlators in pp collisions by STAR

• Different regions of correlator explained in PRL 130 (2023) 051901

- Quark/gluon region: perturbative interactions between quarks/gluons
- Transition region: break of scaling corresponding to confinement
- Free hadron region: scaling from uniformly distributed hadrons

Energy-energy correlators in pp collisions by ALICE

- Higher $p_{\rm T}$ jets peak at smaller opening angles between particles
 - $\bullet\,$ Higher initial virtuality, more energy to radiate to reach $\Lambda_{\rm QCD}$
 - Angular ordering \Rightarrow hadronization starts at later time!

Jussi Viinikainen (Vanderbilt)

Energy-energy correlators in pp collisions by CMS

- Shift of peak in EEC continues until very high jet p_{T}
- Different event generators give different predictions
- No event generator can describe data over the whole jet p_{T} range

Introduction to energy-energy correlators

2 Dealing with background in heavy ion environment

3 Simple energy-loss model with Pythia8

Simulations used in this study

- Only generator level information is used
- Pythia8 (CP5)
 - Study energy-energy correlators in vacuum
- Pythia+Hydjet
 - Hard jet events generated by Pythia8 (CP5) are embedded into soft underlying event generated by Hydjet (Drum5F)
 - $\bullet\,$ Select the 0-10% most central events based on UE energy density
 - Jet energy loss is not simulated
 - Jet reconstruction is done only using Pythia8 particles
 - \Rightarrow Particle from Pythia = signal
 - \Rightarrow Particle from Hydjet = background

Signal	Pythia+Pythia	Signal+Signal
Background	Pythia+Hydjet Hydjet+Hydjet	Signal+Fake Fake+Fake

Energy-energy correlator definition for this analysis

$$EEC(\Delta r) = C_{norm} \sum_{jets \in [p_{T,1}, p_{T,2}]} \sum_{pairs} \frac{p_{T,i} p_{T,j}}{p_{T,jet}^2} \Delta r_{i,j}$$
$$EEC(\Delta r) = \frac{1}{N_{pairs}} \sum_{jets \in [p_{T,1}, p_{T,2}]} \sum_{pairs} (p_{T,i} p_{T,j})^n \Delta r_{i,j}$$

- Normalize with weighted number of pairs
 - \Rightarrow Integral over analyzed area is one
- Do not add jet p_{T} to the pair weight
 - Improves resolution, no need for unfolding
- Sensitivity to soft particles can be decreased by setting n = 2
- Selects pairs within R = 0.4 from winner-take-all jet axis

Energy-energy correlators as a function of jet $p_{\rm T}$

- The shape of the correlators are similar to pp data
 - Regions for free hadrons, transition, and free quarks/gluons visible
 - $0.4 < \Delta r$: Acceptance drop outside of jet radius
 - Higher p_{T} jets peak at lower values of Δr

12 / 27

Energy-energy correlators as a function of track p_{T}

- For lower track p_{T} cuts, enhancement close to jet radius
- This is caused by background contributions
- Is high track $p_{\rm T}$ cut enough to suppress background?

Jussi Viinikainen (Vanderbilt)

Expected background from Pythia+Hydjet, n = 1

$$1 \text{ GeV} < \text{track } p_{\text{T}}, n = 1$$

 $3 \, \text{GeV} < \text{track } p_{\mathrm{T}}, \ n = 1$

- Significant background contribution with 1 GeV cut
- Even with 3 GeV cut, significant background around 0.2 $\lesssim \Delta r \lesssim$ 0.4
- Can this be helped with increasing the weight exponent n?

Expected background from Pythia+Hydjet, n = 2

$$1 \text{ GeV} < \text{track } p_{\text{T}}, n = 2$$

 $3 \,\mathrm{GeV} < \mathrm{track} \ p_\mathrm{T}, \ n=2$

- Fake+fake background significantly reduced with respect to n = 1
- Signal+fake background is still significant
- Background subtraction needed in PbPb

Background estimation: reflected η cone

• Reflect jet η coordinate, require at least twice the cone radius distance from original axis to avoid overlapping cones

• if
$$|\eta_{\rm jet}| > R \Rightarrow \eta_{\rm reflected} = -\eta_{\rm jet}$$

• if
$$-R \le \eta_{\text{jet}} < 0 \Rightarrow \eta_{\text{reflected}} = \eta_{\text{jet}} + 2R$$

- if $0 \le \eta_{\text{jet}} \le R \Rightarrow \eta_{\text{reflected}} = \eta_{\text{jet}} 2R$
- The background estimation is constructed by pairing all particles from the signal cone with all particles in the reflected cone

- Even when one reflected cone per event is used to estimate background, this still needs to be normalized
 - Assume 10 background particles in signal cone and 10 in reflected cone
 - True background: $9 + 8 + \dots + 2 + 1 = 45$ pairings
 - Reflected cone estimate: $10 + 10 + \dots + 10 + 10 = 100$ pairings
 - There might be a random jet in the reflected cone
- $\Rightarrow\,$ Estimate the effect on total normalization from MC by taking ratio of background pairs in signal cone and all pairs in reflected cone

Fake+fake background within reflected η cone

 Pairing reflected cone particles reproduces fake+fake contribution within signal cone

Jussi Viinikainen (Vanderbilt)

Signal+fake background estimation with reflected η cone

• Pairing signal particles from jet cone with reflected cone particles reproduces signal+fake contribution

Jussi Viinikainen (Vanderbilt)

Fake+fake background estimation with reflected η cone

• Pairing background particles from jet cone with reflected cone does not reproduce fake+fake contribution. Missing local correlations

Overall performance of reflected η cone

- Left: pairing reflected cone particles reproduces fake+fake contribution within signal cone
- Middle: pairing signal particles from jet cone with reflected cone particles reproduces signal+fake contribution
- Right: pairing background particles from jet cone with reflected cone does not reproduce fake+fake contribution. Missing local correlations.
- \Rightarrow Restrict analysis to region where fake+fake contribution is small

Determine region of validity for reflected η cone, n = 1

Jussi Viinikainen (Vanderbilt)

WWND 2024

Determine region of validity for reflected η cone, n = 2

Jussi Viinikainen (Vanderbilt)

EEC determination

WWND 2024

Dealing with background in heavy ion environment

Simple energy loss model: $p_{\rm T}$ spectrum shift in Pythia8

- Estimating energy loss effects in data
 - Shift the jet $p_{\rm T}$ spectrum in Pythia8
 - Find a shift that produces measured jet $R_{
 m AA}$ around $p_{
 m T}=120\,{
 m GeV}$
 - Compare energy-energy correlators in shifted and reference p_{T} bins

Estimate effect of energy loss to energy-energy correlator

• Simple energy loss leads to narrowing of energy-energy correlator

• Possible substructure modifications will be on top of this shape!

- Energy-energy correlators have been measured in pp collisions
- In PbPb collisions, large underlying event makes measurement difficult
- Effects of background can be mitigated
 - $\bullet\,$ Reflected η cone background estimate
 - Apply higher track p_{T} cut
 - Use higher exponent for energy weight
- Possible substructure modifications will be on top of a narrowing from energy loss
- Bottom line: there is a way to measure energy-energy correlators in heavy ion collisions! Stay tuned for results!

This work is supported by the grant DE-FG05-92ER40712 from the US Department of Energy

Image credit: BOOST 2022 conference logo

Jussi Viinikainen (Vanderbilt)

EEC determination

Particle density with respect to jet axis in Pythia8

- E-Scheme axis has a dip in particle density around jet radius
- In correlation measurements, good to avoid sharp structures like this

Energy-energy correlator axis comparison in Pythia8

- Most of the pairs are the same
- For e-scheme axis, strong enhancement with respect to WTA around the jet radius

Unfolding the measurement, how is this done in pp?

- Example from CMS-PAS-SMP-22-015
- Three-dimensional unfolding with variables:
 - Jet p_{T}
 - Energy weight $\frac{p_{T,i} p_{T,j}}{p_{T,iet}^2}$
 - Pair opening angle Δr

- Multidimensional unfolding in heavy ion collisions is difficult
 - Worse jet resolution compared to pp
 - Use of vacuum reference questionable
- Is there a way to simplify the unfolding procedure?

Does my observable need unfolding: jet p_{T}

- Jet $p_{\rm T}$ has significant resolution effects
- Gaussian smearing with $\sigma = 0.16$ applied for jet p_{T} to estimate resolution effects
- Resolution combined with steeply falling spectrum ⇒ correlator shifts to right
- Conclusion: jet $p_{\rm T}$ needs unfolding

Does my observable need unfolding: Δr

- Particle pair Δr resolution effects only important at very small Δr
- Conclusion: when very small angles are avoided, no unfolding needed

Does my observable need unfolding: Δr

- Particle pair Δr resolution effects only important at very small Δr
- Conclusion: when very small angles are avoided, no unfolding needed

Does my observable need unfolding: $p_{T,1} p_{T,2}$ weight

- Particle p_T resolution generally good
- Gaussian smearing with $\sigma = 0.024$ applied for $p_{T,1} p_{T,2}$ to estimate resolution effects
- Conclusion: no unfolding needed

Unfolding jet $p_{\rm T}$ as binning variable

- Unfolding with RooUnfold
 - Since unfolding deals with distributions, need to combine jet $p_{\rm T}$ bins and Δr axis
 - Create response matrix from matched reconstructed and generator level jets
 - Use generator level particles for both $\Rightarrow \Delta r$ axis is diagonal

• This construction allows unfolding jet $p_{\rm T}$ bins without touching the other variables for which resolution effects are small