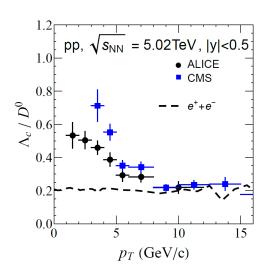


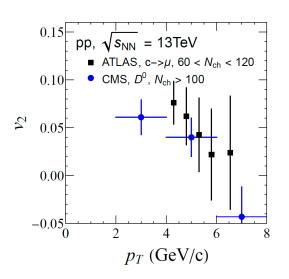
Heavy Hadron Production in pp Collisions J. Aichelin

J. Zhao, P.B. Gossiaux, K. Werner (Subatech, Nantes)

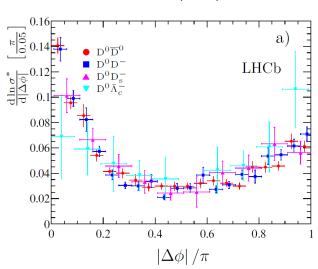

T. Song, E. Bratkovskaya (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt)

39th Winter Workshop on Nuclear Dynamics Jackson, Febr. 12-16, 2024

Why should we study heavy hadrons in pp collisions?


Experimental surprises:

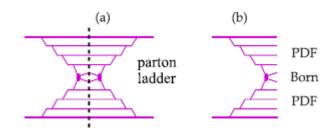
 $\Lambda_{\rm c}/\,{\rm D}^{\rm 0}$ ratio


are fragmentation functions not universal?

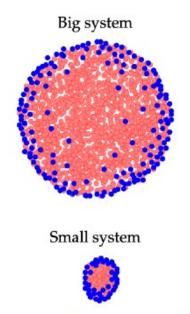
elliptic flow v₂

pQCD: $v_2 = 0$ Where does the finite v_2 come from? azimuthal $\Delta \phi(p_D, p_{Dbar})$

JHEP06(2012)141

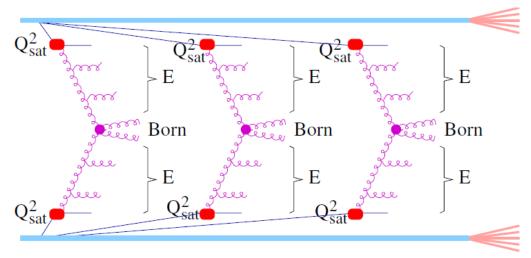


What causes this structured correlation function?


EPOS4 (→ Klaus Werner on Thursday)

EPOS4: general purpose event generator for heavy ion collisions at RHIC and LHC

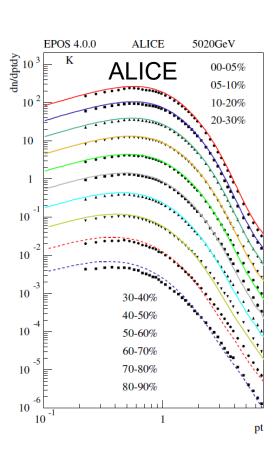
All scattering are rigorously treated in parallel Overall energy conservation and factorisation binary scaling Saturation



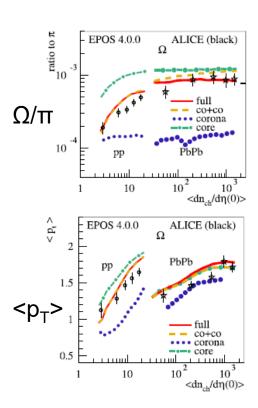
Core (QGP) and corona contributions

core = red

corona = blue



PRC 108 (2023), 064903 PRC 108 (2023), 034904, 2310.09380 [hep-ph]


EPOS4 results in light hadron sector

EPOS4 describes the light meson sector

data: STAR EPOS4.0.0 00-05% 00-05% 05-10% 05-10% STAR_{10-20%} 10-20% 20-30% 20-30% 30-40% 30-40% 40-50% 50-60% 60-70% 70-80% m_t -m (GeV/c²) m_{t} -m (GeV/ c^{2})

Even rare baryons

EPOS4HQ – extension for heavy quark physics

EPOS 4 EPOS4HQ

heavy quarks are created at the interaction points a QGP is created if energy density > 0.57 GeV/fm²

No further interaction heavy quarks interact with the QGP

elastic and inelastic collisions

e⁺e⁻ fragmentation function → hadrons hadronization by fragmentation and

coalescence (for Q/Qbar in the QGP)

when the light quarks hadronize

hadronic interactions described by UrQMD

Microcanonical description of heavy quarks. We can follow each Q individually from creation through hadronization until they are part of heavy hadrons all fluctuations are kept

allows to trace back the D meson observables to the properties of Q at production

EPOS4HQ – elastic HQ-parton scattering

The interaction between HQ and q and g is described by Born type diagrams

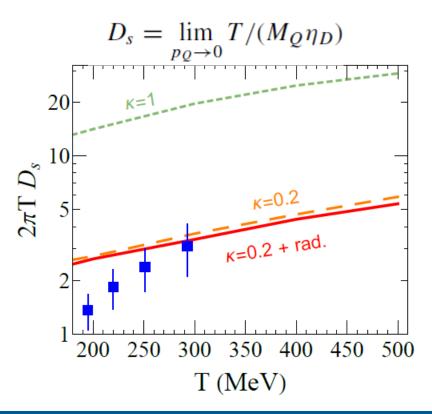
$$\frac{d\sigma_F}{dt} = \frac{\mathbf{g^4}}{\pi (s - M^2)^2} \left[\frac{(s - M^2)^2}{(t - \kappa \mathbf{m_D^2})^2} + \frac{s}{t - \kappa \mathbf{m_D^2}} + \frac{1}{2} \right] \quad \stackrel{\bigoplus}{\Theta \Theta \Theta} \stackrel{\nabla}{\bullet} \stackrel{V(r)}{\sim} \stackrel{\exp(-m_{_{\boldsymbol{\sigma}}}r)}{r}$$

q/g is randomly chosen from a Fermi/Bose distribution with the local hydro temperature coupling constant and infrared screening are input

Peshier NPA 888, 7 based on universality constraint of Dokshitzer If t is small (\sqrt{t} <<T): Born has to be replaced by a hard thermal loop (HTL) approach For \sqrt{t} >T Born approximation is (almost) ok

(Braaten and Thoma PRD44,2625) for QED: effective propagator

$$\frac{1}{t - \kappa m_D}$$

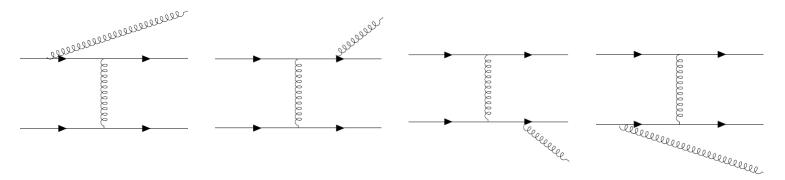

with κ that energy loss indep. of the artificial scale t* which separates the regimes Extension to QCD (PRC78:014904)

EPOS4HQ – elastic scattering

Independence of the energy loss on the intermediate scale t* requires

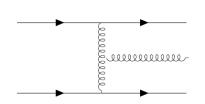
$$m_D \rightarrow \kappa m_D$$
 with

In the calculations we include all the other channels and gluon interactions


Approach can be checked against lattice calculations

Better agreement as compared to pQCD with a effective thermal mass in gluon propagator

EPOS4HQ - inelastic cross section


QED like

PRD89(2014)074018

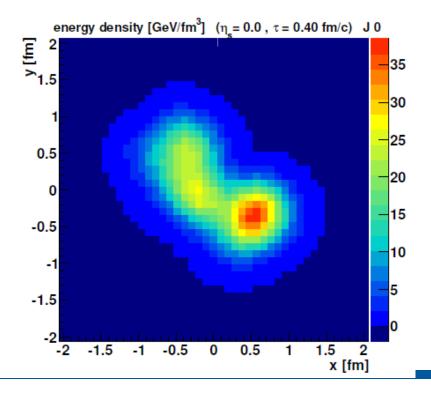
genuine QCD

At large \sqrt{s} cross section factorizes

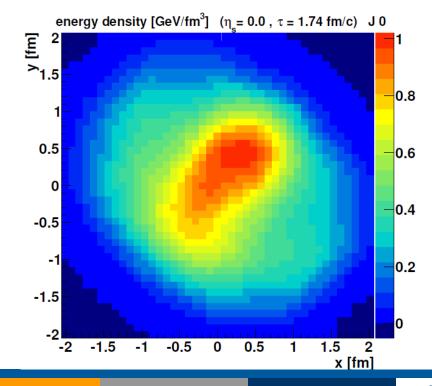
$$\frac{\mathrm{d}^5 \sigma_{\mathrm{rad}}}{\mathrm{d}x \, \mathrm{d}^2 l_T \, \mathrm{d}^2 k_T} \approx \frac{x (1-x) \left| \mathcal{M}_{\mathrm{el}} \right|^2}{4 (2\pi)^2 (s-m_Q^2)} \underbrace{P_g}_{\mathrm{g-emission prob.}} \underbrace{\frac{1}{\sqrt{\Delta_a}} \Theta(B^+)}_{\mathrm{phase space}}$$

Same elastic matrix element as for elastic coll;

$$P_g(x, \vec{k}_T, \vec{\ell}_T; M) = \frac{C_A \alpha_s}{\pi^2} \frac{1 - x}{x} \Big(\underbrace{\frac{\vec{k}_T}{\vec{k}_T^2 + x^2 M^2}}_{\text{from Q}} - \underbrace{\frac{\vec{k}_T - \vec{\ell}_T}{(\vec{k}_T - \vec{\ell}_T)^2 + x^2 M^2}}_{\text{from g}} \Big)^2 \quad \mathbf{x} = \mathbf{\omega} / \mathbf{E}$$


no divergencies

pp in EPOS4HQ


EPOS4HQ applied to pp: QGP is created if energy density > 0.57 GeV/fm²

Energy density in the transverse plane of a typical pp event (each event looks differently)

Initial

close to hadronization

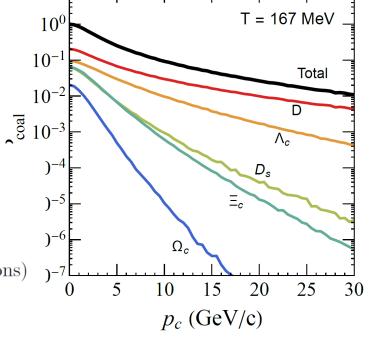
EPOS4HQ Hadronization

Quantal density matrix approach $P_m = Tr(\rho_m \rho)$ in Wigner density formalism

Wigner density obtained by Solution of Schrödinger eq. → rms radius → 3d harm. Osc. wf with same rms

$$\frac{dN}{d^3\mathbf{P}} = g_H \sum_{N_c} \int \prod_{i=1}^k \frac{d^3\mathbf{p}_i}{(2\pi)^3} f_i(\mathbf{p}_i) W_m(\mathbf{p}_1, ..., \mathbf{p}_i)$$

$$\times \delta^{(3)} \left(\mathbf{P} - \sum_{i=1}^k \mathbf{p}_i\right),$$


$$f_1(\mathbf{p}_1) = (2\pi)^3 \delta^{(3)} \left(\mathbf{p}_c - \mathbf{p}_1 \right)$$

 $f_i(\mathbf{p}_i)$ for i > 1 drawn from thermal distribution

$$W_m(\mathbf{p}_1, ..., \mathbf{p}_i) = (2\sqrt{\pi}\sigma_m)^3 e^{-\sigma_m^2 p_r^2}$$

Wigner density of the heavy hadron m in momentum space

 g_H degeneracy factor of color and spin. k=2(3) for mesons (baryons)

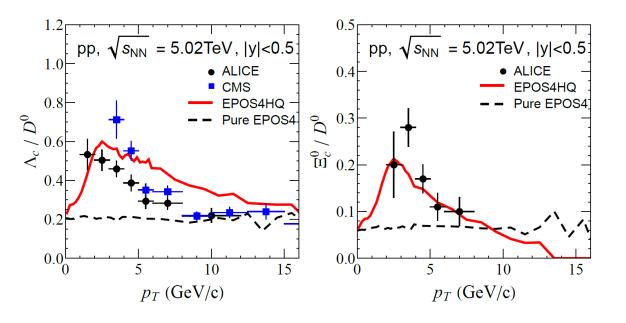
Applied when the QGP reaches ε = 0.57 GeV/fm³

If not hadronized by coalescence \rightarrow hadronization by fragmentation

p_T spectra for pp

Spectra at creation and before hadronization very similar

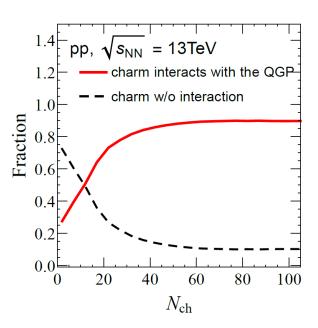
→ Little momentum loss in the QGP


Momentum loss due to hadronization much larger

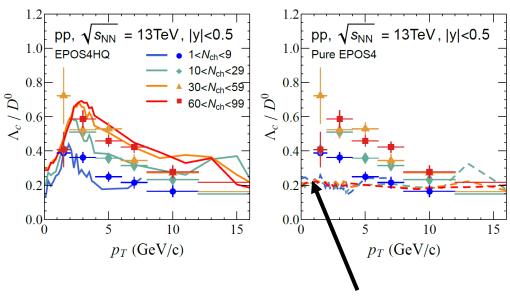
Final spectrum agrees with QCD based FONLL calculations

All measured spectra of mesons and baryons reproduced

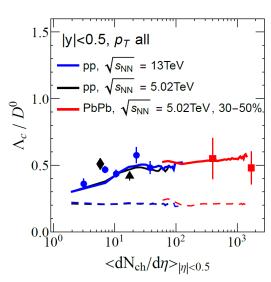
But: Momentum spectrum not sensitive to the existence of a QGP


Yield ratios

 e^+e^- : ratio is constant in p_T = pure EPOS4


Interaction with QGP enhances ratio at low p_T hadronization produces more baryons

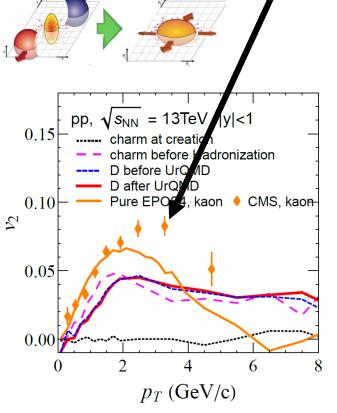
With increasing N_{ch} more Q pass a QGP Saturates at $N_{ch} \approx 40$



Yield ratios

N_{ch} dependence of the enhancement is confirmed by experiment

Flat distribution in pure EPOS4


Also experimental enhancement saturates at at N_{ch} ≈ 40

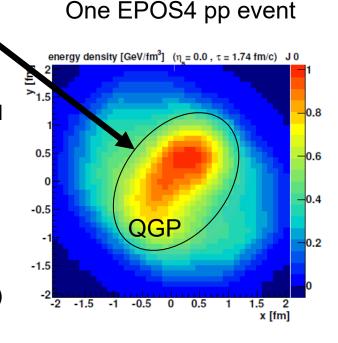
Yield ratios are a strong indication that a QGP is formed

Elliptic flow v₂

Light hadrons show a finite v₂ created by

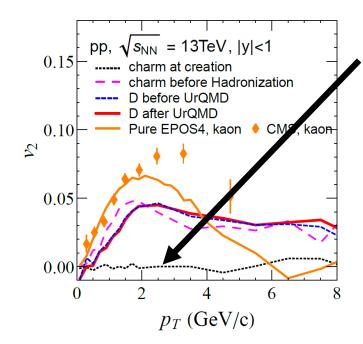
fluctuations of the energy density and hydro expansion

At low p_T: Spatial eccentricity


→ Anisotropy in azimuthal momentum space

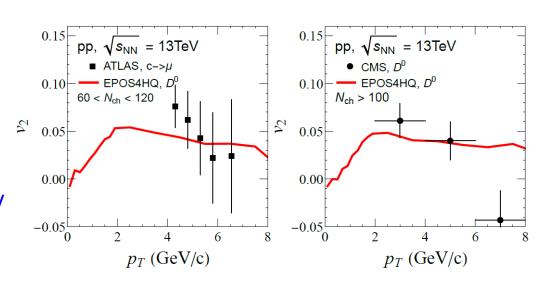
 \rightarrow $v_2(p_T)$ for low p_T

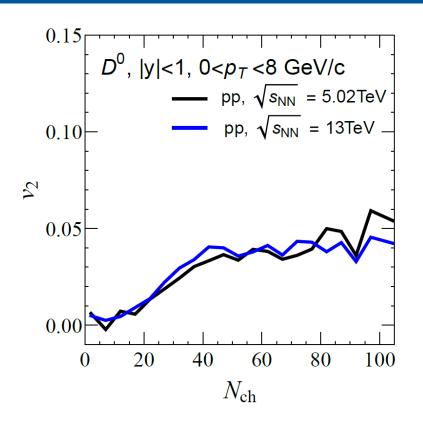
At high p_T:


v₂ (p_T) due to path length difference

→ Different eloss in QGP)

Elliptic flow v₂


For heavy mesons: Form of $v_2(p_T)$ similar but value is smaller


v₂ (p_T > 5 GeV) is up to now the only way the measure the energy loss of heavy quarks in a QGP produced in a pp collision

initially heavy quarks are produced in hard processes M >> Λ_{QCD} → no finite elliptic flow expected

In EPOS4HQ the interaction with the QGP creates this flow even in pp.

Elliptic flow v₂

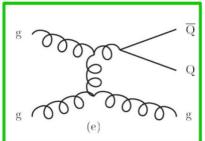
 v_2 depends on N_{ch}

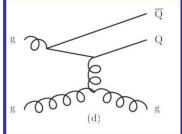
saturates when all heavy quarks pass a QGP (N_{ch} ≈ 40)

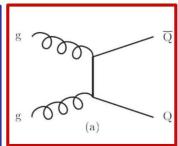
Is not beam energy dependent But less than v₂ of light hadrons

The finite v_2 of heavy hadrons (initially =0!!) as well as its p_T dependence is another strong indication that a QGP is formed in pp collisions

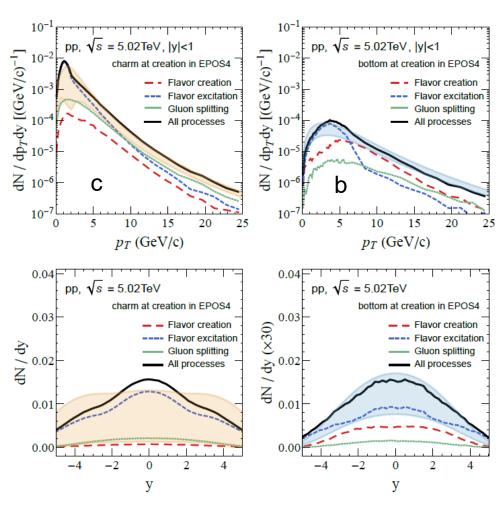
Correlations between Q and Qbar are important


if one wants to study/understand D Dbar correlation if one wants to study hidden heavy flavour mesons like J/ψ if one wants to understand the p_T distributions of heavy hadrons


FONLL only single particle p_T spectrum Pythia ISR and FSR can be added EPOS4HQ separates the three different production mechanisms

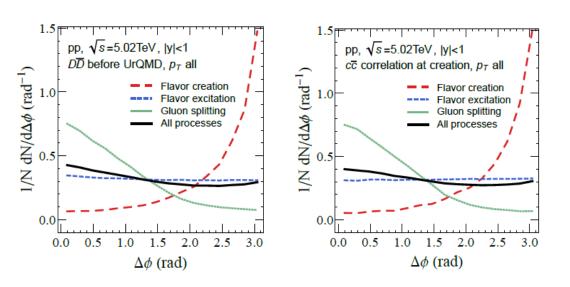

gluon splitting time like

gluon excitation space like

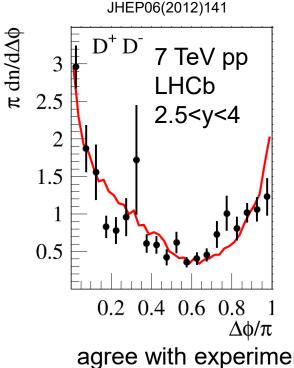

flavour creation hard process (Born)

p_⊤ and y distribution depend on creation mechanism

For b and c quarks the contributions are different

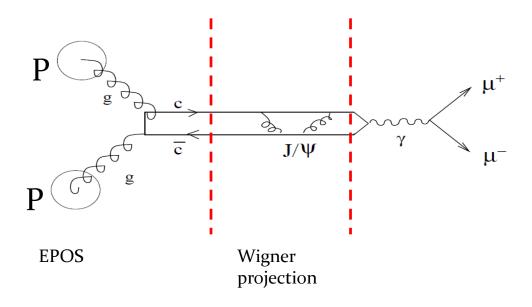

High p_T c \rightarrow gluon splitting

High p_T b \rightarrow flavor creation (more energy avail.)


low p_T flavor excitation

Spectra (sum of all contributions) agree with FONLL

Shaded: FONLL

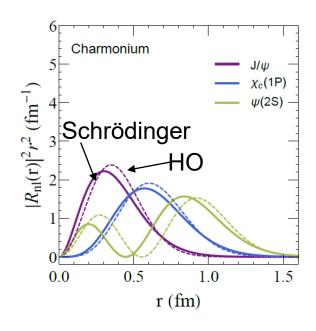

agree with experiment

Correlations between c and cbar show also up in quarkonium production

How to describe a bound state like a c-cbar in QCD?

It involves low momenta and needs non perturbative input → assumptions.

Our approach: Wigner density formalism (as successful at lower energies)


$$\left[-\frac{1}{2\mu} \left(\frac{d^2}{dr^2} + \frac{2}{2} \frac{d}{dr} \right) + \frac{l(l+1)}{2\mu r^2} + V(r) \right] R_{nl}(r) = E R_{nl}(r)$$

$$V(r) = -\alpha/|\mathbf{r}| + \sigma|\mathbf{r}|$$
 with $\alpha = 0.513$, $\sigma = 0.17 \text{GeV}^2$, $m_c = 1.5 \text{GeV}$, $m_b = 5.2 \text{GeV}$.
 $\mathbf{r} = \mathbf{r}_i - \mathbf{r}_j$
 $\psi(\mathbf{r}) = R_{nl}(r) Y_{l,m}(\theta, \phi)$.

Wave fct converted into a 3d harmonic oscillator wave fct with same spin and same rms radius

Wave fct

- → density matrix
- \rightarrow Wigner density $W_{nl}(r,p)$

Initial Wigner density of the Q Qbar pair at creation:

$$\begin{split} W^{(2)}(\mathbf{P},\mathbf{r},\mathbf{p}) \sim r^2 \exp\left(-\frac{r^2}{2\sigma_{\mathbf{Q}\bar{\mathbf{Q}}}^2}\right) f_{\mathbf{Q}\bar{\mathbf{Q}}}^{\mathrm{EPOS4}}(\mathbf{P},\mathbf{p}) \\ \sigma_{c\bar{c}} = 0.4 \mathrm{fm} \ ; \ \sigma_{b\bar{b}} = 0.2 \mathrm{fm} \end{split}$$
 P,p given by EPOS4

Probability that quarkonium m with quantum number n,l is produced

$$\frac{dP^m_{nl}}{d^3P_{cm}} = \sum \int \frac{d^3rd^3p}{(2\pi)^6} W^m_{nl}(\mathbf{r},\mathbf{p}) W^{(2)}(\mathbf{P_{cm}},\mathbf{r},\mathbf{p})$$

$$\frac{10^{-1}}{10^{-2}} \text{pp, } \sqrt{s} = 5.02\text{TeV, } |\mathbf{y}| < 1$$

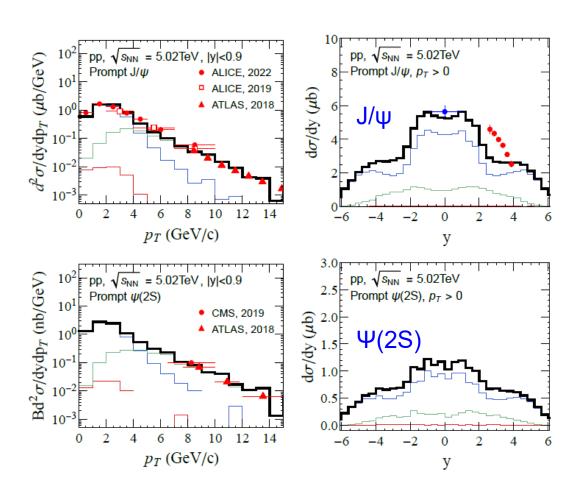
$$\frac{10^{-2}}{10^{-3}} \text{pp, } \sqrt{s} = 5.02\text{TeV, } |\mathbf{y}| < 1$$

$$\frac{10^{-2}}{10^{-3}} \text{pp, } \sqrt{s} = 5.02\text{TeV, } |\mathbf{y}| < 1$$

$$\frac{10^{-2}}{10^{-3}} \text{potom at creation in EPOS4}$$

$$\frac{10^{-3}}{10^{-4}} \text{potom at creation in EPOS4}$$

$$\frac{10^{-3}}{10^{-4}} \text{potom at creation in EPOS4}$$


$$\frac{10^{-3}}{10^{-4}} \text{potom at creation in EPOS4}$$

$$\frac{10^{-4}}{10^{-5}} \text{potom at creation in EPOS4}$$

$$\frac{10^{-5}}{10^{-5}} \text{potom at creation in E$$

In c-cbar and b-bbar different creation processes act differently

Prompt J/ψ spectrum and contribution of the different Q Qbar creation processes

high p_T: dominated by gluon splitting

flavor creation does not play a role

low p_T:
Dominated by flavor excitation

Without understanding the correlations one cannot understand J/ψ production

Conclusion

```
Q Qbar physics added to EPOS4 (\epsilon > \epsilon_0 = 0.57 \text{ GeV/fm}^3 \rightarrow \text{QGP}) if applied to pp and assuming that
```

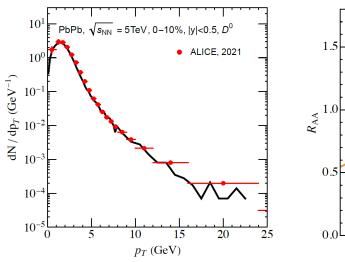
Qqbar interact with QGP with elastic and inelastic collisions Q and Qbar in the QGP can hadronize by coalescence (density matrix)

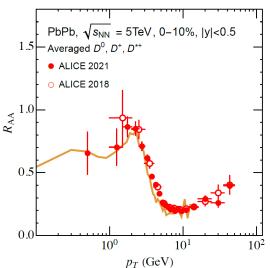
 v_2 well reproduced (interaction of Q with the QGP) meson/baryon ratio well reproduced (hadronization of c cbar by coalescence) p_T spectra and c cbar correlations little affected by QCP

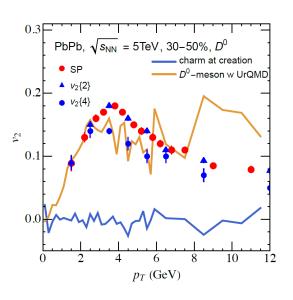
It seems that pp collisions are by far not elementary but complex many body reactions

- Three production mechanisms identified (which explain the exp data) create different correlations between Q and Qbar
- \rightarrow p_T spectra of heavy mesons is superposition of the three J/ ψ production (described by density matrix approach)
 - \rightarrow p_T spectra not understandable without these correlations

pp: perspective to study different aspects of QGP/QCD in detail

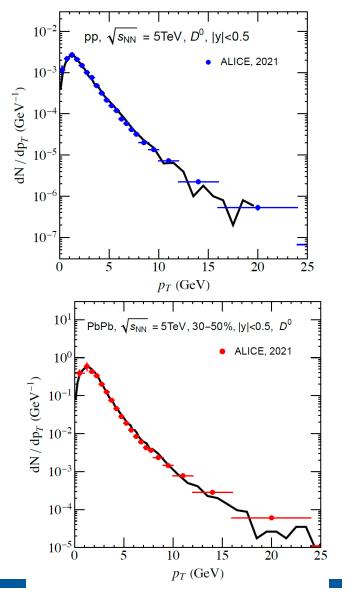

HQ interactions with QGP verified by D meson results

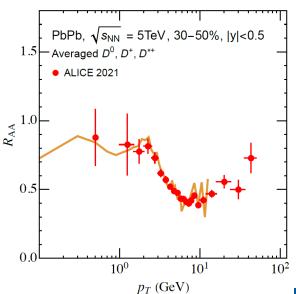

D mesons test the energy loss and v_2 of heavy quarks in a QGP energy loss tests the initial phase

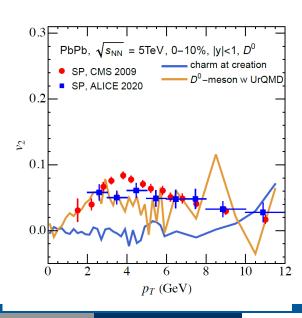

v₂ the late stage of the expansion

Two mechanisms : collisional energy loss: PRC78 (2008) 014904

radiative energy loss: PRD89 (2014) 074018

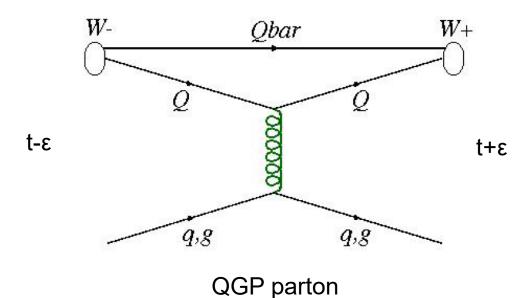



EPOS4HQ reproduces dN/dp_T , R_{AA} and v_2 quite well


→ Heavy quark dynamics in QGP medium under control

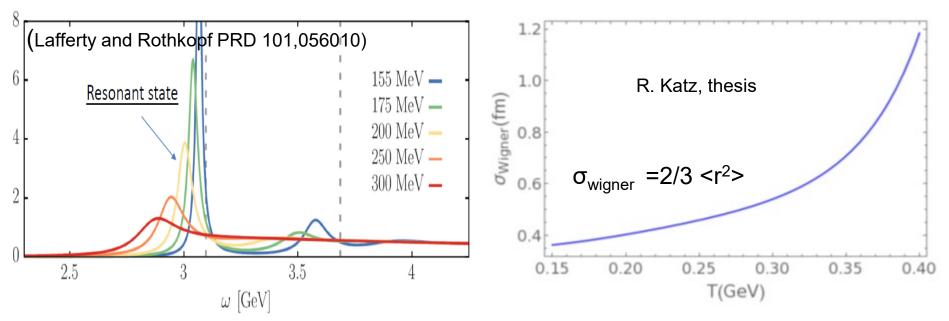
Open heavy flavor results in pp and AA from EPOS4

Energy loss of Q in medium can be controlled by comparing open Heavy flavour results with experiment


J/ψ creation in heavy ion collisions

 $\Gamma^{\Phi}(t)$ expressed in Wigner and classical phase space density:

$$\Gamma^{\Phi}(t) = \frac{dP^{\Phi}(t)}{dt} = \frac{d}{dt}Tr[\rho^{\Phi}, \rho_N(t)] \approx \frac{d}{dt} \prod \frac{d^3r_i d^3p_i}{(2\pi)^{3N}} W^{\Phi}(\mathbf{r}, \mathbf{p}) W^c(\mathbf{r_1}, \mathbf{p_1}, ... \mathbf{r_N}, \mathbf{p_N})$$


If the collisions are point like in time and if $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ is time independent (1,2 are charm quark, n=number of collision of i and j, t_{ij} (n)=time of n-th collision of ij)

$$\Gamma^{\Phi}(t) = \sum_{n} \sum_{i=1,2} \sum_{j \geq 3} \delta(t - t_{ij}(n)) \prod_{N} \frac{d^3 r_i d^3 p_i}{(2\pi)^{3N}} W^{\Phi}(\mathbf{r}, \mathbf{p}) [\underbrace{W^c(\mathbf{r_1}, \mathbf{p_1}, ... \mathbf{r_N}, \mathbf{p_N}, t + \epsilon)}_{W^+} - \underbrace{W^c(\mathbf{r_1}, \mathbf{p_1}, ... \mathbf{r_N}, \mathbf{p_N}, t - \epsilon)}_{W^-}]$$

J/ψ creation in heavy ion collisions

Lattice calc: $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ depends on the temperature and hence on time

This creates an additional rate, called local rate

$$\Gamma_{loc} = (2\pi\hbar)^3 \int d^3r d^3p \ W_{Q\bar{Q}}(\mathbf{r}, \mathbf{p}, t) \dot{W}_{\Phi}(\mathbf{r}, \mathbf{p}, T(t)).$$

Final multiplicity of J/ in heavy-ion coll with a dissociation temperature

$$P(t) = P^{prim}(t_{init}) + \int_{t_{init}}^{t} [\Gamma_{coll}(t') + \Gamma_{loc}(t')] dt' \quad \rightarrow \quad P(t \rightarrow \infty) \quad \text{= asympt. multiplicity}$$

Influence of the Corona

EPOS 2 show two classes of particles of initially produced particles:

- Core particles which become part of QGP
- Corona particles from the surface of the interaction zone (energy density too low, no collision after production → like pp) importent for high pt and for v2

Confirmed by centrality dependence of multiplicity

For J/ψ mesons we use as working description:

Corona J/ ψ are those where none of its constituents suffers from a momentum change of q > q_{thres} . Larger q would destroy a J/ ψ .

Our approach and open quantum systems

Von Neuman eq.

$$\partial \rho_N / \partial t = -\frac{i}{\hbar} [H, \rho_N]$$
 $H = H_{1,2} + H_{N-2} + U_{1,2}$ $U_{1,2} = \Sigma_j V_{1,j} + \Sigma_j V_{2,j}$

Prob. to find quarkonium

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_N(t)]$$

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_{N}(t)]$$
 with $[\rho^{\Phi}, H_{1,2}] = 0$ $[\rho^{\Phi}, H_{N-2}] = 0$

Quarkonium rate:

$$\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = \frac{-i}{\hbar} Tr[\rho^{\Phi}[U_{1,2}, \rho_N(t)]]$$

$$\partial \rho_N(t)/\partial t = -\frac{i}{\hbar} \Sigma_j[K_j, \rho_N(t)] - \frac{i}{\hbar} \Sigma_{k>j}[V_{jk}, \rho_N(t)].$$

Interaction: coll. heavy quarks – partons:
$$-\frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)] \equiv \langle \Sigma_{k>j} \Sigma_n \delta(t - t_{jk}(n)) \rangle$$

$$\langle W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t + \epsilon) - W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t - \epsilon)) \rangle .$$

yields

$$\begin{array}{ccc} & \cdot & \langle W_N^c(\{\mathbf{r}\},\{\mathbf{p}\},t+\epsilon) - W_N^c(\{\mathbf{r}\},\{\mathbf{p}\},t-\epsilon)) \rangle. \\ \\ \frac{dP^{\Phi}(t)}{dt} & = & \Gamma^{\Phi}(t) = h^3 \frac{d}{dt} \int \prod_j^N d^3r_j d^3p_j W_{12}^{\Phi} W_N^c(t) = & h^3 \int \prod_j^N d^3\mathbf{r}_j d^3\mathbf{p}_j \ W_{12}^{\Phi} \frac{\partial}{\partial t} W_N^c(t) \end{array}$$

Lindblad eq. (open quantum systems) in the quantal Brownian motion regime

$$\frac{d}{dt}\rho(t) = -i\left[\frac{p^2}{M} + \Delta H, \rho\right] + \sum_n \int \frac{d^3k}{(2\pi)^3} \left[C_n(\vec{k})\rho C_n^{\dagger}(\vec{k}) - \frac{1}{2}\left\{C_n^{\dagger}(\vec{k})C_n(\vec{k}), \rho\right\}\right]$$

Miura, Akamatsu, 2205.15551

Wigner Density Formalism

c-cbar interaction depends on relative p and r only, \rightarrow plane wave of CM Starting point: Wave function (w.f.) of the relative motion of state i: $|\Phi_i\rangle$

w.f. → density matrix

$$|\Phi_i><\Phi_i|$$

Wigner density of $|\Phi_i>$: $\Phi_i^W(\mathbf{r},\mathbf{p})=\int d^3y e^{i\mathbf{p}\cdot\mathbf{y}}<\mathbf{r}-\frac{1}{2}\mathbf{y}|\Phi_i><\Phi_i|\mathbf{r}+\frac{1}{2}\mathbf{y}>.$ (close to classical phase space density) $\mathbf{R}=\frac{\mathbf{r}_1+\mathbf{r}_2}{2},\quad \mathbf{r}=\mathbf{r}_1-\mathbf{r}_2,\\ \mathbf{P}=\mathbf{p}_1+\mathbf{p}_2,\quad \mathbf{p}=\frac{\mathbf{p}_1-\mathbf{p}_2}{2}.$

$$n_i(\mathbf{R},\mathbf{P}) = \sum_{\text{all c\bar{c} pairs}} \int \frac{d^3r d^3p}{((2\pi)^3} \Phi^W_i(\mathbf{r},\mathbf{p}) \prod_{\text{all other particles}} \int \frac{d^3r_j d^3p_j}{(2\pi)^{3(N-2)}} \rho^W_N(\mathbf{r_1},\mathbf{p_1}....\mathbf{r_N},\mathbf{p_N})$$

$$\frac{dn_i}{d^3P} = \int \frac{d^3R}{(2\pi)^3} n_i(\mathbf{R}, \mathbf{P})$$

The results are obtained using a relativ. formulation

pp: In momentum space given by tuned PYTHIA In coordinate space $\sim r^2 \exp\left(-\frac{r^2}{2\delta^2}\right)$ $\delta^2 = \langle r^2 \rangle/3 = 4/(3m_c^2)$