SPHENIX

Jet performance studies of sPHENIX with early data and simulation.

Benjamin Kimelman for sPHENIX Vanderbilt University 39th Winter Workshop on Nuclear Dynamics

February 14th, 2024

Supported in part by

Outline

- The sPHENIX Experiment
- Commissioning Progress
- Future Analyses

sPHENIX Experiment at RHIC Data recorded: 2023-07-16 00:54:00 EST Run / Event: 21707 / 3194 Collisions: Au + Au @ $\sqrt{S_{NN}} = 200$ GeV

The Physics of sPHENIX

The sPHENIX Experiment

- First new detector at the Relativistic Heavy Ion Collider (RHIC) in ~20 years
- 2015 Long Range Plan deemed sPHENIX essential
- 2023 Long Range Plan stated necessary to complete sPHENIX science program

sPHENIX Detector Overview

- Precision vertexing and tracking with MVTX, INTT, TPC, and TPOT
- High acceptance calorimetry with EMCAL, iHCAL, and oHCAL
- 1.4 T superconducting solenoid
- Event characterization with the MBD, sEPD, and ZDC
- High DAQ rate (15 kHz trigger) + streaming readout for tracking

08/30/2023

Centrality in sPHENIX

- Glauber model + NBD Fit matches MBD total charge distributions well
- High min-bias trigger efficiency of 92%

100

200

300

400

0.4

0.2

0

700

600

MBD Charge N+S

500

sPHENIX Calorimeters

- Large acceptance covering all of midrapidity
 - |η|<1.1
 - Full 2π azimuthal coverage
- Hadronic calorimeter system allows first measurement of neutral hadron component of midrapidity jets at RHIC
 - Reduces fragmentation bias

EM Calorimeter

IEEE Trans. Nuc. Sci., vol. 68, no. 2, pp. 173-181

- Calibrated to π^0 mass peak
- Early data, more recent calibrations expected to provide much sharper peak

Counts

Hadronic Calorimeters

and outer HCals

Hadronic Calorimeters

sPHENIX Experiment at RHIC Run / Event: 21615 / 1362 Collisions: Au + Au @ $\sqrt{S_{NN}}$ = 200 GeV

sPHENIX Run 2023

SPHENIX

• First commissioning run with Au+Au collisions in May 2023

SPHENIX

sPHENIX Run 2023

- First commissioning run with Au+Au collisions in May 2023
- RHIC failure in August led to run ending 8 weeks early
- Significant commissioning progress during and after run
 - Despite the limited nature of commissioning data, several "standard candle" measurements in Au+Au data are now in progress

Why Study Jets in Heavy Ion Collisions?

- Probe created during initial hard scattering and experiences full evolution of system
- QGP at RHIC is different from at the LHC!
 - Temperature & evolution
- Different quark vs gluon jet mixture at RHIC and LHC
- Lower kinematic range
 - Radiation close to QGP medium scale early in the collision

PHENIX Upgrade Proposal

Characterization of Underlying Event

SPHENIX

- All jets sit on top of a (mostly) soft Underlying Event (UE)
- Necessity for jets -> all experiments characterize the UE!
- Different methods are used

STAR Phys. Rev. C 102 (2020) 054913

sPHENIX Characterization of Underlying Event

- Multiplicity method
 - $p_T = p_{T,jet}^{raw} \rho_{mult} * \{N_{comp} \langle N_{signal} \rangle * p_T^{raw}\}$
 - Phys. Rev. C 108 (2023) 2, L021901
- Iterative subtraction method (ATLAS style)
 - Find small R seed jets, remove and find mean E with v_2 modulation

• ρ *A (area) method

What is ρ^*A ?

• ρ is the median p_T /Area of all k_T jets in the event (generally the leading 2 jets are removed)

- $\rho ^{*}A$ gives the median p_{T} of the UE
- Towers assumed to have m=0

sPHENIX UE Distribution

- Underlying event in calorimeter ٠ data from Run 23 shows a Gaussian-like distribution of ρ_{raw} *A in central collisions
- Embedding of PYTHIA8 into data • shows slight increase, consistent with addition of UE from pp
 - Embedding of MC into data shown to be crucial in limiting systematic uncertainties on jets and other calorimeter measurements in Au+Au environment
 - Embedding performed on tower level

sPHENIX UE Distribution

Clear centrality trend:

- Gaussian in central collisions
- More skewed in peripheral collisions

sPHENIX UE Distribution

ATLAS distribution shows similar shape across all centralities

Mean UE p_T

Similar centrality trend in mean p_T between CMS and sPHENIX

Calorimeter Factorization

- ρ_{raw}*A calculated using inputs from each individual calorimeter
- EMCal dominates UE distribution due to low PT
- Addition of contributions from each calorimeter matches total
- **50**F *A) [GeV] sPHENIX Preliminary 02/09/2024 Au+Au √s_{NN}=200 GeV Run 23 156k MB Events 40 E^{EMCal}_{Tower}>50 MeV, Area R=0.4 Calorimeter $\langle \rho_{raw}^{*} A \rangle \pm \sigma(\rho_{raw})$ EMCal 30 IHCal, EM Scale OHCal, EM Scale 20 Total 10 0 0-10% 30-40% 60-70%
 - Centrality

• ρ_{raw} *A is factorizable!

Centrality

and data driven checks

Number of Towers

Projections for Runs 24 and 25

- Predicted significance using 62 pb⁻¹ for pp and 32 nb⁻¹ for Au+Au (optimal scenario)
- Jet measurements to high $\ensuremath{p_{T}}$
 - Overlap with LHC measurements!
- Precision measurements at low $\ensuremath{p_{T}}$
- High statistics for:
 - Direct photons (γ-jet measurements)
 - Charged hadrons (fragmentation functions, substructure)

Signal	Au+Au 0–10% Counts	p+p Counts
Jets $p_{\rm T} > 20~{ m GeV}$	$6800000(R_{\rm AA}=0.4)$	6 700 000
Jets $p_{\rm T} > 40~{ m GeV}$	$20000~(R_{\rm AA}=0.4)$	19 000
Direct Photons $p_{\rm T} > 20 { m GeV}$	9 200 ($R_{AA} = 1$)	3 700
Charged Hadrons $p_{\rm T} > 25 {\rm GeV}$	$1300(R_{\rm AA}=0.2)$	2 600

Jet v_2 and jet R_{AA} double ratio will have significant reduction in statistical uncertainties and allow direct comparison to the LHC

Complimentary Measurement to the LHC

Jet Substructure

25

Precise measurement of jet substructure, including in b-jets

Conclusions

- sPHENIX is well equipped to perform precise and significant jet measurements
- Considerable progress has been made toward commissioning using Run 23 data
- Good understanding of the underlying event
- Many exciting measurements to come with pp and Au+Au data in Run 24 and Au+Au in Run 25

