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N/

s Motivation

> The rich structure of atomic nuclei:

v" Clustering, halo, skin ...
v" Quadrupole/octupole/hexdecopole deformations
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s Motivation

The atomic nuclei carry non-trivial shapes and structures beyond the simple spherical Woods-
Saxon distribution. For instance, it has been suggested that the wave functions of light nuclei,
such as '?C, contain alpha clustering. In such a scenario, the nucleus appears more like three a

particles rather than six protons and six neutrons behaving independently.
Nature Communications, 13, 2234 (2022)

a. He-4 = o particle | b. Cluster model for Be-8 nucleus c. Cluster model for C-12 nucleus
1‘ rotation axis
© proton
@ neutron

Such effects are essential for understanding the nuclear structure and can serve as a
background estimate for other studies (e.g., the nuclear short-range correlation studies~).

** Lei Shen, Bo-Song Huang, and Yu-Gang Ma
Phys.Rev.C 105 (2022) 1, 014603
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MOtiVatiOIl Lei Shen, Bo-Song Huang, and Yu-Gang Ma
Phys.Rev.C 105 (2022) 1, 014603
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s* Motivation

In heavy-1on collisions;

» No difference was observed between
Woods-Saxon and a clustering

Clustering in heavy-ion collisions 1s too
complicated to be measured.

Phys.Rev.C 104 (2021) 4, L041901
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** Motivation
Our study goals can be summarized as:

(1) Can the EIC detectors (ePIC and 2™ detector) differentiate between different geometries, such as
spherical '>C versus a triple-alpha cluster configuration of >2C?

(2) How can the nuclear structure impact other EIC e+A physics programs?

To reach the project goals, we executed our plan 1n the following order:

(1) Identifying the EIC model simulations that can be used to study the alpha clustering in light nuclei.
v" The BeAGLE model

(2) Modifying the EIC model simulations with initial nuclear configurations, which include alpha clustering.
v" The nuclear shape and structure picture have been into the BeAGLE model

(3) Identify the physics observables that can be used in such work.
v" Several observables have been introduced (e.g., mean energy observable)

(4) Identify the study cavities that will need further investigation.



The BeAGLE model

Wan Chang et al., PRD 106, 012007 (2022)



*¢* The BeAGLE model:

Glauber handled by
BeAGLE

Primary interaction
treated by PYTHIAG6
for the hard collision.

.

“g

PyQM: Nuclear Geometry + optional gluon radiation in medium.
Hadronization handled by PYTHIAG.

Primary interaction

Cascade process
handled by DPMJET.

Stochastic.

Formation time.

Hadronization N

Nuclear remnant
evaporation and
break up by FLUKA.
Intra-nuclear cascade

Excited nucleus
Evaporation

Nuclear remnant
evaporation & breakup

Wan Chang et al., PRD 106, 012007 (2022)

Some Nuclear Effects

In BeAGLE

Ll

* Parton distribution functions
» Parton saturation (CGC etc.)

» Short-range correlations

R
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M
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* "Fermi motion"

» Partonic (or "dipole") MS

* Partonic gluon radiation

» Medium-modified hadronization
* Formation times

* Hadronic Cascade

* Nuclear evaporation, breakup

RRRRA RRR

* Photonic de-excitation of A*



** The BeAGLE model:
d = dz p/p,
from Z N

first-collision

Wan Chang et al., PRD 106, 012007 (2022)

A hybrid model consisting of
DPMJet and PYTHIA with
nPDF EPS09.

Nuclear geometry by
DPMJet and nPDF provided
by EPS09.

Parton level interaction and

jet fragmentation completed

in PYTHIA.

Nuclear evaporation ( gamma
dexcitation/nuclear fission/fermi
break up ) treated by DPMJet

Energy loss effect from routine by
Salgado&Wiedemann to simulate the
nuclear fragmentation effect in cold
nuclear matter

e




** The BeAGLE model:
d = dz p/p,
from Z N

first-collision

Wan Chang et al., PRD 106, 012007 (2022)
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¢ The o clustering

Modifying the EIC model simulations with initial nuclear configurations, which include

alpha clustering.

v" The nuclear shape and structure picture have been into the BeAGLE model

The a clustering implementation:

In 3Be,'%C, and 180 we include the o clustering as:

v" Chose the centers of the n-a clusters with a
particular configuration

v" Construct the a cluster with four nucleons

v" Generated random configuration event by event
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Figure.1: The normalized density distribution
of the different configurations of the >C
introduced into the BeAGLE model. 11



¢ The o clustering

The BeAGLE model is updated to

consider the o clustering E
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s+ Potential measurements
> (E) at forward rapidity

Identify the physics observables that can be used in such work.
v" Several observables have been introduced (e.g., mean energy observable)

The (E) in the forward B0 detector acceptant [4.6 < n < 5.9] Vs centrality.
v" Centrality is defined via the cutting on the impact parameter.

Energy of particle 1 at

46 <n<59
i=1 WiE;

Expected efficiency

13



s Potential measurements
» (E) at forward rapidity

The (E) in the forward B0 detector acceptant [4.6 < n < 5.9] Vs centrality.
v" Centrality is defined via the cutting on the impact parameter.
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s Potential measurements
» (E) at forward rapidity

The (E) in the forward B0 detector acceptant [4.5 < 1 < 5.9] Vs centrality.
v' Centrality is defined via the cutting on the impact parameter.
v" Random orientation
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s Potential measurements
> The E-E Correlations

Angular scales in the two-point energy correlator map
the time evolution of the jet.

Two-Point Energy Correlator
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The size of the nucleus represents a scale that will be imprinted in
the angular structure of the correlator.

> Only s1ze or size and structure? Kyle Devereaux, Wenqing Fan, Weiyao Ke, Kyle Lee, Ian Moult
arXiv:2303.08143 16
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s Potential measurements

» The E-E Correlations
v'  Jets Reconstruction

Jet Definition
* Anti-k; algo.
« R=1.0

° |77jet| <35

The EEC cuts EEC = 2 z (E" Ef)
* Drjets > 9.0 GeV/e

2
jets i#j PT jet

* Inside the jet p; > 0.5 GeV/c — 1 dEEC
* n=0.5 ~ EEC dAR




s Potential measurements S
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Conclusions

We investigated the ability to use the EIC to study the o clustering in
aBe,12C, and '§0:

> The (E) in B0 is sensitive to a clustering in ;Be,*2C, and *50
» The (E') in BO is sensitive to o clustering configuration (i.e., GS and HS)

» The EEC is sensitive to a clustering and clustering configurations

Our proposed measurements are sensitive to a clustering and
its configuration.

Thank You 19



¢ The detector’s acceptance:

Caption text

Detector

Acceptance

Notes

Zero-Degree Calorimeter (ZDC)

0 < 5.5 mrad (n > 6)

About4.0mradat ¢ ~

BO Detector

55<6<20.0 mrad (4.6 <n<5.9)

Silicon tracking + EM preshower

n

» In this current study, we are using: ZDC and B detectors

20




