

The 39th Winter Workshop on Nuclear Dynamics

Direct Photons Production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with PHENIX

Deepali Sharma Stony Brook University

02/14/2024

Outline

Direct Photon Spectra

Deepali Sharma

2

Why Photons?

Photons are color blind probes of Quark Gluon Plasma

Sensitive to **space-time** evolution and temperature of matter produced!

Deepali Sharma

Measurement of yield constrains initial conditions, sources, emission rates and space-time evolution

Direct Photon Puzzle: Early vs Late Emission ?

Deepali Sharma

• Large yield and large v2

- Large yield: emissions from the early stage when temperature is high
- •Large v2: emissions from the late stage when the collective flow is sufficiently built up

Challenging for current theoretical models to describe large yield and elliptic flow simultaneously

Photon Measurements in P

Phys. Rev. Lett. 104, 132301 (2010)

Deepali Sharma

PHENIX
10¹
10⁰
10⁻¹
10⁻¹
10⁻¹

$$10^{-1}$$

 10^{-1}
 10^{-1}
 10^{-1}
 10^{-2}
 10^{-3}
 10^{-3}
 10^{-3}
 10^{-4}
 10^{-4}
 10^{-4}
 10^{-4}
 10^{-4}
 10^{-5}
 10^{-5}
 10^{-6}
 10^{-7}
 10^{-8}
 10^{-7}
 10^{-8}
 10^{-9}
 10^{-8}
 10^{-9}
 0^{-2}
 2^{-4}
 4^{-4}
 4^{-4}
 4^{-4}
 4^{-4}
 4^{-4}
 4^{-4}
 2^{-5}
 10^{-8}
 10^{-9}
 0^{-2}
 2^{-4}
 4^{-4}
 10^{-8}
 10^{-9}
 0^{-2}
 2^{-4}
 4^{-6}
 8^{-10}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-1}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}

3 independent measurements in good agreement with each other

 $p_T \left[\text{GeV} / c \right]$

Towards Precision Measurement with "Golden Data Set"

- •Results from the high statistics 2014 dataset
 - more conversions at the PHENIX silicon vertex detector (VTX) (X/X_o ~ 14%)
 - $\label{eq:stable} \begin{array}{l} \bullet \mbox{double differential analysis of shape and} \\ \mbox{rapidity density of direct photon spectra as a} \\ \mbox{function of } p_T \mbox{ and charged particle} \\ \mbox{multiplicity, } dN_{ch}/d\eta \end{array}$
 - $\bullet larger \ p_T \ coverage$
 - $\cdot v_2$ measurements in finer centrality bins
 - smaller uncertainties

External Conversion: Double Ratio Tagging Method

Double ratio tagging method reduces systematic uncertainties!

Direct y for Au+Au at 200 GeV

arXiv:2203.17187 (Accepted by PRC)

Deepali Sharma

- Hydro Model: Different dependence on $dN_{ch}/d\eta$

Similar spectra around 2 GeV/c -common source of photon production independent of $\sqrt{s_{NN}}$

Non-prompt Direct γ at Au+Au at 200 GeV

Scaling of Non-prompt Direct γ with $dN_{ch}/d\eta$

arXiv:2203.17187 (Accepted by PRC)

 α independent of p_T for direct photons and non-prompt photons

び

T_{eff} for Non-prompt Direct γ

Deepali Sharma

arXiv:2203.17187 (Accepted by PRC)

 No obvious system size dependence of T_{eff} Increasing inverse slope (>350 MeV/c) with p_T suggests contributions from sources beyond those from Hadron Gas

Elliptic Flow of Direct Photons

Deepali Sharma

• Quantified by the second Fourier moment of the particle azimuthal distribution with respect to the reaction plane.

$$\frac{dN}{d\phi} = N_0 [1 + 2v_2 \cos(2\phi)]$$

• In the analysis, v_2 is calculated using the following equation

$$v_2^{dir} = \frac{R_{\gamma} v_2^{incl} - v_2^{dec}}{R_{\gamma} - 1}$$

• We measure the anisotropy in the azimuthal distribution of photons with respect to the reaction plane determined by the forward vertex detector $1.5 < |\eta| < 2.9$.

Direct Photons $V_2(R_{\gamma} \text{Calculation})$

Deepali Sharma

Inclusive Photon Flow (v2incl) Extraction

Fit $\Delta \phi$ distribution for a given p_T bin to $\frac{dN}{d\Delta \phi} = A(1 + 2v_2 \cos(2\Delta \phi) + 2v_4 \cos(4\Delta \phi))$

Deepali Sharma

Hadron Decay Photon Flow (v_2^{dec}) Extraction $R_{\nu}v_2^{incl}$

- A combined fit to multiple measurements of $\pi^0, \pi^{\pm} V_2$
- Fit is used as input into the simulations to calculate decay photon V_2
- Contributions of other mesons estimated by scaling *KE*_T

•
$$v_2^{\pi}(KE_T) = v_2^{allmesons}(KE_T)$$

$$KE_T = \sqrt{p_T^2 + m^2} - m$$

Inclusive (v_2^{incl}) and Decay Photon (v_2^{dec}) Flow

Deepali Sharma

- Low p_T region— Decay and inclusive photon flow are comparable
- High p_T region inclusive and decay photon flow are constant with decay slightly larger than inclusive for all centralities

Direct Photons Flow

Consistent with previous results

Deepali Sharma

Comparison with Theory

Deepali Sharma

C. Gale, J.-F. Paquet, B. Schenke & C. Shen Phys. Rev. C 105 (2022) 014909

Multi-messenger heavy-ion physics

- Hybrid model that describes all stages of relativistic heavy-ion collisions
- Effect of pre-equilibrium phase on both photonic and hadronic observables highlighted.
- Dominant contribution from preequilibrium above 3 GeV/c in the model seems to align well with the data
- Overall yield falls short, especially below 2 GeV/c
- •Quantitative disagreement with flow for all chemical equilibration times

Summary and Outlook

Double differential analysis of direct and nonprompt direct photons in p_T and $dN_{ch}/d\eta$ for shape of p_T spectra and rapidity density

Deepali Sharma

Thank You!

Direct y in small systems

Bridging the gap

Onset of QGP?

Functional form inspired by pQCD

Fit below 1 GeV/*c* motivated by Drell Yan measurements [Ito, et al, PRD23, 604 (1981)]

Systematic errors include the fit errors, different functional forms

$$\frac{dN}{dy} = a\left(1 + \frac{p_T^2}{b^2}\right)^c$$

 $a = 6.4 \times 10^3$ b = 1.45

Systematic Uncertainties

2%

Β

Systematic uncertainty source (39 GeV)	σ_{sys}/R_{γ}	Туре
π^0 reconstruction		
tagged photon yield	8%	А
Conditional acceptance		
input Hagedorn p_T spectra and energy scale	8%	В
Cocktail ratio		
γ^{hadron}/π^0	2%	В
Systematic uncertainty source (62.4 GeV)	σ_{sys}/R_γ	Type
π^0 reconstruction		
tagged photon yield	5%	Α
Conditional acceptance		
input Hagedorn p_T spectra and energy scale	5%	В
Cocktail ratio		

 γ^{hadron}/π^0

V. Doomra (Stony Brook University)

η/π^0 from world data

Performace of our rejection techniques

V. Doomra (Stony Brook University)

Sources of Direct Photons

Event Plane Measurement

$$\Psi_2 = \frac{1}{2} \tan^{-1} \left(\frac{Q_{2,y}}{Q_{2,x}} \right)$$

1/28/2024

Michael Giles

Event plane is <u>estimated</u> based on charge deposited in FVTX detector

Event Plane Resolution

R

- FVTX has finite resolving power to estimate t event plane
- The event plane resolution of the FVTX is calculated using the 3 sub-event method
 - Average correlation functions over many events

$$es \{\Psi_{2}^{FVTX}\} = \frac{\left\langle \cos\left(2(\Psi_{2}^{FVTX} - \Psi_{2}^{BBC})\right)\right\rangle \left\langle \cos\left(2(\Psi_{2}^{FVTX} - \Psi_{2}^{CNT})\right) \right\rangle}{\left\langle \cos\left(2(\Psi_{2}^{BBC} - \Psi_{2}^{CNT})\right)\right\rangle}$$

$$(1) \qquad 0 \quad \text{FVTX, all sectors of elar of e$$

30

Propagation of Uncertainties

- Correlations between terms in the formula, and R_{ν} in both numerator and denominator
 - Asymmetric uncertainties not described by normal Gaussian error propagation
 - Use a MC sampling method, moving each term according to their uncertainties to get distribution of direct photon flow
 - Distribution is integrated from infinity until 68% of the total is in the integral to determine upper and lower uncertainty bounds

Sources of Direct Photons

 $p_T \, [\text{GeV}/c]$

Deepali Sharma

PH*ENIX

Comparison of Local Inverse Slopes

Deepali Sharma

• Contributions from pre-equilibrium may be important at intermediate p_T

