Finite density QCD equation of state and **lattice-based T'-expansion (Ising-TExS)**

arXiv:2402.08636v1

Micheal KAHANGIRWE

Collaborators: Stefan A. Bass, Elena Bratkovskaya, Johannes Jahan, Pierre Moreau, Paolo Parotto, Damien Price, Claudia Ratti, Olga Soloveva and Mikhail Stephanov.

The 39th Winter Workshop on Nuclear Dynamics 2024

Jackson hole Wyoming

- February , 15 2024

QCD Phase Diagram

Extension to 4D phase diagram

[See Johannes' Talk]

QCD Phase Diagram

Extension to 4D phase diagram [See Johannes' Talk]

Hydrodynamics

Need EoS as input

QCD Phase Diagram

Extension to 4D phase diagram [See Johannes' Talk]

Hydrodynamics

Need EoS as input

Fermi sign problem

Lattice simulations at finite μ_B are challenging

Part 1: Taylor Expansion

Taylor: Lattice QCD results

Taylor Expansion around $\mu_B = 0$

$$\frac{P(T,\mu_B)}{T^4} = \sum_{n=0}^{\infty} \frac{1}{2n!} \chi_{2n}(T,\mu_B=0) \left(\frac{\mu_B}{T}\right)^{2n}$$

[Borsanyi, S. et al High Energy Physics.9(8), 1-16.(2012)] [Bazavov, A et al PhysRevD.95, 054504 (2017)]

$$c_n(T) = \frac{\chi_n^B(T, \mu_B = 0)}{n!} = \frac{1}{n!} \left(\frac{\partial}{\partial(\mu_B/T)} \right)^n (P/T^4) \Big|_{\mu_B = 0}$$

Taylor: Lattice QCD results

Taylor Expansion around $\mu_B = 0$

$$\frac{n_B(T,\mu_B)}{T^3} = \sum_{n=0}^{\infty} \frac{1}{(2n-1)!} \chi_{2n}(T,\mu_B=0) \left(\frac{\mu_B}{T}\right)^{2n-1}$$

[Borsanyi, S. et al High Energy Physics.9(8), 1-16.(2012)] [Bazavov, A et al PhysRevD.95, 054504 (2017)]

$$c_n(T) = \frac{\chi_n^B(T, \mu_B = 0)}{n!} = \frac{1}{n!} \left(\frac{\partial}{\partial(\mu_B/T)} \right)^n (P/T^4) \Big|_{\mu_B = 0}$$

Taylor: Lattice QCD results

Taylor Expansion around $\mu_B = 0$

$$\frac{n_B(T,\mu_B)}{T^3} = \sum_{n=0}^{\infty} \frac{1}{(2n-1)!} \chi_{2n}(T,\mu_B=0) \left(\frac{\mu_B}{T}\right)^{2n-1} \bullet \mathbf{Cu}$$

[Borsanyi, S. et al High Energy Physics.9(8), 1-16.(2012)] [Bazavov, A et al PhysRevD.95, 054504 (2017)]

$$c_n(T) = \frac{\chi_n^B(T, \mu_B = 0)}{n!} = \frac{1}{n!} \left(\frac{\partial}{\partial(\mu_B/T)} \right)^n (P/T^4) \Big|_{\mu_B = 0}$$

Limitations

Currently limited to $\frac{\mu_B}{T} \le 3$ despite great computational power Including one more higher-order term does not remove unphysical behavior due to truncation of Taylor series

[Bollweg, D. et al Phys.Rev.D 108 (2023) 1, 014510] [Borsanyi , S et al arXiV:2312.07528v1. (2023)]

3/27

4/27

•

$$n_B(T, \mu_B) = T^3 \sum_{n=0}^{2} \frac{1}{(2n-1)!} \chi_{2n}^{non-Ising}(T) \left(\frac{\mu_B}{T}\right)$$

 $\frac{\mu_B}{T}\right)^{2n-1} + \frac{T_C^4}{T} n_B^{Ising}(T, \mu_B)$

•

$$n_B(T, \mu_B) = T^3 \sum_{n=0}^{2} \frac{1}{(2n-1)!} \chi_{2n}^{non-Ising}(T) \left(\frac{\mu_B}{T}\right)$$

 $\left(\frac{\mu_B}{T}\right)^{2n-1} + \frac{T_C^4}{T} n_B^{Ising}(T, \mu_B)$

Taylor expansion up to $\mathcal{O}((\mu_B/T)^4)$ $\chi_n^{lat}(T) = \chi_n^{non-Ising}(T) + \frac{T_C^4}{T^4} \chi_n^{Ising}(T)$

•

$$n_B(T,\mu_B) = T^3 \sum_{n=0}^{2} \frac{1}{(2n-1)!} \chi_{2n}^{non-Ising}(T) \left(\frac{\mu_B}{T}\right)^{2n-1} + \frac{T_C^4}{T} n_B^{Ising}(T,\mu_B)$$

Taylor expansion up to $\mathcal{O}((\mu_B/T)^4)$ $\chi_n^{lat}(T) = \chi_n^{non-Ising}(T) + \frac{T_C^4}{T^4} \chi_n^{Ising}(T)$

[P Parotto, et al PhysRevC. 108(1), 101.034901(2020)]

[Karthein, J, et al arXiv:2110.00622.(2021)]

5/27

[Karthein, J, et al arXiv:2110.00622.(2021)]

Part 2: T' Expansion Scheme (T ExS)

Simulating at Imaginary μ_B

[Borsányi, S et al PRL. 108(1), 101.034901(2021)]

Simulating at Imaginary μ_B

[Borsányi, S et al PRL. 108(1), 101.034901(2021)]

Simulating at Imaginary μ_B

[Borsányi, S et al PRL. 108(1), 101.034901(2021)] $T\frac{\chi_{1}^{B}(T,\mu_{B})}{\mu_{B}} = \chi_{2}^{B}(T',0)$ T'(T)

$$\chi_n^B(T,\mu_B) = \frac{1}{n!} \left(\frac{\partial}{\partial(\mu_B/T)}\right)^n (P/T^4)$$

$$\chi_n^B(T,\mu_B) = T \left[1 + \kappa_2^{BB}(T) \left(\frac{\mu_B}{T}\right)^2 + \kappa_4^{BB}(T) \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}\left(\frac{\mu_B}{T}\right)^6\right]$$

Simulating at Imaginary μ_B

[Borsányi, S et al PRL. 108(1), 101.034901(2021)] $T\frac{\chi_{1}^{B}(T,\mu_{B})}{T} = \chi_{2}^{B}(T',0)$ μ_B T'(T,

 μ_B dependence is captured in T-rescaling. • **Trusted up to** $\frac{\mu_B}{T} = 3.5$

$$\chi_n^B(T,\mu_B) = \frac{1}{n!} \left(\frac{\partial}{\partial(\mu_B/T)}\right)^n (P/T^4)$$

$$(\mu_B) = T \left[1 + \kappa_2^{BB}(T) \left(\frac{\mu_B}{T}\right)^2 + \kappa_4^{BB}(T) \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}\left(\frac{\mu_B}{T}\right)^6\right]$$

6/27

Relationship between **Taylor expansion** and **T' expansion**

•
$$\kappa_2^{BB}(T) = \frac{1}{6T} \frac{\chi_4^B(T)}{\partial \chi_2^{'B}(T)}$$

•
$$\kappa_4^{BB}(T) = \frac{1}{360T\chi_2'^B(T)^3} \left(3\chi_2'^{B^2}\chi_6^B(T) - 5\chi_2^B(T)''\chi_4^B(T)\right)$$

[Borsányi, S et al PRL. 108(1), 101.034901(2021)]

Relationship between **Taylor expansion** and **T' expansion**

•
$$\kappa_2^{BB}(T) = \frac{1}{6T} \frac{\chi_4^B(T)}{\partial \chi_2^{'B}(T)}$$

•
$$\kappa_4^{BB}(T) = \frac{1}{360T\chi_2'^B(T)^3} \left(3\chi'_2^{B^2}\chi_6^B(T) - 5\chi_2^B(T)''\chi_4^B(T)^2\right)$$

[Borsányi, S et al PRL. 108(1), 101.034901(2021)]

- $\kappa_2(T)$ is fairly constant over a large T-Range
- There is a separation of scale between $\kappa_2(T)$ and $\kappa_4(T)$
- $\kappa_4(T)$ is almost zero \rightarrow faster convergence
- A good agreement with HRG results at Low **Temperature**

Relationship between **Taylor expansion** and **T' expansion**

•
$$\kappa_2^{BB}(T) = \frac{1}{6T} \frac{\chi_4^B(T)}{\partial \chi_2'^B(T)}$$

•
$$\kappa_4^{BB}(T) = \frac{1}{360T\chi_2^{'B}(T)^3} \left(3\chi_2^{'B^2}\chi_6^B(T) - 5\chi_2^B(T)''\chi_4^B(T)^2\right)$$
 T

[Borsányi, S et al PRL. 108(1), 101.034901(2021)]

Lattice data: Parametrization

[M. K et al arXiv:2402.08636v1]

25 MeV < T < 800 MeV

Part 3: Introducing Critical Point (3D-Ising)

Scaling 3D-Ising model EoS

- 10/27

Scaling 3D-Ising Model Eos

QCD Critical point is in the 3D-Ising model Universality class

$M = M_{0}R^{\beta}\theta$	(R,
$h = h_0 R^{\beta\delta} \tilde{h}(\theta)$	lpha
$r = R(1 - \theta^2)$	δ_{o}
$(R \ge 0, \theta \le \theta_0)$	β

[Parotto et al PhysRevC.101.034901(2020)] [Nonaka et al Physical Review C, 71(4), 044904.(2005)] [Guida et al Nuclear Physics B, 489(3), 626-652.(1997)]

Close to the critical point, we define a parametrization for Magnetization M, Magnetic field h, and reduced temperature

$$\begin{array}{l} \theta \end{pmatrix} \longmapsto (r,h) & r = \frac{T - T_C}{T_C} \\ = 0.11 & h \rightarrow \text{ External magnetic field} \\ \sim 4.8 \end{array}$$

 ~ 0.326

$$\begin{split} G(R,\theta) &= h_0 M_0 R^{2-\alpha} \left[\theta \tilde{h}(\theta) - g(\theta) \right] \\ g(\theta) &= c_0 + c_1 (1-\theta^2) + c_2 (1-\theta^2)^2 + c_3 (1-\theta^2)^3 \\ \tilde{h}(\theta) &= (\theta + a\theta^3 + b\theta^5) \end{split}$$

Introducing Critical Point

 $T'_{,T} = (\partial T' / \partial T)_{\mu}$ at the critical T_0 Transition temperature at $\mu_B = 0$ w', ρ', α'_{12} - Free parameters

Important relations

Relationship of TExS with BEST Mapp

$$\tan \alpha_{12}' = \tan \alpha_1 - \tan \alpha_2,$$

[M. K et al arXiv:2402.08636v1] [Parotto et al PhysRevC.101.034901(2020)]

Strength of the discontinuity

leading singular be

where the product of specific heat at constant pressure
$$Cp$$

$$cp = T^3 \left(\frac{(s_c/n_c) \sin \alpha_1 - \cos \alpha_1}{w \sin \alpha_{12}} \right)^2 G_{hh} \left(1 + \mathcal{O}(r^{\beta \delta - 1}) \right)$$

 $w \sin \alpha_{12}$ -Controls the strength of the jump G_{hh} – order parameter in Ising Model

$$\alpha'_{12}, w', \rho' \longrightarrow \alpha_1, \alpha_2, w, \rho$$

$$\frac{\cos^2 \alpha_1}{(\alpha_2)^2 + (\sin \alpha_{12})^2} \qquad w' = w \frac{1}{\cos \alpha_1} \sqrt{(\cos \alpha_1 \cos \alpha_2)^2 + (\sin \alpha_{12})^2}$$

Transition Line

$T'[T_{C}, \mu_{BC}] = T_{0}$

Choosing μ_{BC} fixes T_C and α_1

e.g

$\mu_{BC} = 350$ MeV, $T_C = 140$ MeV and $\alpha_1 = 6.6^{\circ}$

$\mu_{BC} = 500$ MeV, $T_C = 117$ MeV and $\alpha_1 = 11^0$

[M. K et al arXiv:2402.08636v1]

Slope $\alpha_1 = \tan^{-1} \left(\frac{2\kappa_2(T_C)\mu_{BC}}{T_C T_T'} \right)$

TExS

13/27

Introducing Critical Point

3D Ising

[M. K et al arXiv:2402.08636v1]

14/27

Introducing Critical Point

Critical Point

w = 2, $\rho = 2$ & $\alpha_{12} = 90$

 $\mu_{BC} = 350 \text{ MeV}$ $T_C = 140 \text{ MeV}$

Part 4: Merging 3D Ising with T' Expansion (Ising-TExS)

Merging Ising with Lattice (Ising-T ExS)

Full Baryon Density

Lattice Term

[M. K et al arXiv:2402.08636v1]

 $T': T' = T'_{lat}(T,\mu_B) + T'_{crit}(T,\mu_B) - Taylor[T'_{crit}(T,\mu_B)]$

lower order in $\left(\frac{\mu_B}{T}\right)$ higher orders in $\left(\frac{\mu_B}{T}\right)$

Ising Term

Merging Ising with Lattice (Ising-T ExS)

Full Baryon Density

$$\chi_1^B(T,\mu_B) = \frac{n_B(T,\mu_B)}{T^3}$$

Lattice Term

Introducing a Critical Point

$$T_{crit}'(T,\mu_B) \approx \left(\frac{\partial \chi_{2,lat}^B(T,0)}{\partial T} \bigg|_{T=T_0} \right)^{-1} \frac{n_B^{crit}(T,\mu_B)/T^3}{(\mu_B/T)} + \dots$$

$$Taylor[T_{crit}', n=2] \approx \left(\frac{\partial \chi_{2,lat}^B(T,0)}{\partial T} \bigg|_{T=T_0} \right)^{-1} \left[\frac{\partial (n_B^{crit}/T^3)}{\partial (\mu_B/T)} \bigg|_{\mu_B/T=0} + \frac{1}{3!} \frac{\partial^3 (n_B^{crit}/T^3)}{\partial (\mu_B/T)^3} \bigg|_{\mu_B/T=0} \left(\frac{\mu_B}{T} \right)^2 + \dots \right]$$

[M. K et al arXiv:2402.08636v1]

 $\frac{B}{T} = \left(\frac{\mu_B}{T}\right) \chi^B_{2,lat}(T',0)$

 $T': T' = T'_{lat}(T,\mu_B) + T'_{crit}(T,\mu_B) - Taylor[T'_{crit}(T,\mu_B)]$

lower order in $\left(\frac{\mu_B}{T}\right)$ higher orders in $\left(\frac{\mu_B}{T}\right)$

Ising Term

[M. K et al arXiv:2402.08636v1]

17/27

Physical Quark masses

 Close to the critical point, there is a universal dependency of the mapping parameters to quark masses m_a

• Suggests the angle α_{12} between r = 0 and h = 0lines in (T, μ_B) vanishes as $m_a^{2/5}$ $(\alpha_{12} = \alpha_1)$

Universality of the critical point mapping between Ising model and QCD at small quark mass

Maneesha Sushama Pradeep and Mikhail Stephanov Department of Physics, University of Illinois, Chicago, IL 60607, USA (Dated: September 21, 2019)

The universality of the QCD equation of state near the critical point is expressed by mapping pressure as a function of temperature T and baryon chemical potential μ in QCD to Gibbs free energy as a function of reduced temperature r and magnetic field h in the Ising model. The mapping parameters are, in general, not universal, i.e., determined by details of the microscopic dynamics, rather than by symmetries and long-distance dynamics. In this paper we point out that in the limit of small quark masses, when the critical point is close to the tricritical point, the mapping parameters show universal dependence on the quark mass m_q . In particular, the angle between the r=0 and h=0 lines in the (μ,T) plane vanishes as $m_q^{2/5}$. We discuss possible phenomenological consequences of these findings.

Thermodynamic Observables

 $\chi_2(T,\mu_B) = \frac{\partial(n_B/T^3)}{\partial(\mu_B/T)}$

Baryon number susceptibility

Thermodynamic Observables

Baryon Density n_B/T^3

Thermodynamic Observables

21/27

Thermodynamic Relations

$\frac{P(T,\mu_B)}{T^4} = \chi^B_{0,lat}(T,0) + \frac{1}{T} \int_0^{\mu_B} d\hat{\mu}'_B \frac{n_B(T,\hat{\mu}'_B)}{T^3}$

$$\frac{s(T,\mu_B)}{T^3} = \frac{1}{T^3} \left(\frac{\partial P}{\partial T} \right) \Big|_{\mu_B}$$

$$\frac{n_B}{T^3} \qquad c_s^2(T,\mu_B) = \left(\frac{\partial P}{\partial \epsilon}\right) \bigg|_{s/n}$$

Parameter

Other Observables

Energy density

Thermodynamic Observables Entropy density s ¹⁵ $\overline{T^3}$ 10 CP 5 0 400 600 **Parameter** 300 400 $\mu_{BC} = 500 \text{ MeV}$ μ_B [MeV] 200 $T_{C} = 117 \text{ MeV}$ 200 T [MeV] 100 $\alpha_{12} = \alpha_1 = 11^0$ **Speed of Sound** 0.4 c²0.2 0.0 600 400 400 300 200 μ_B [MeV] 200 100 T [MeV] 0

24/27

Part 5: Constraints on the EoS

Constrains of the EoS

- Choosing μ_{BC} fixes T_C and α_1
- α_{12} is fixed physical quark masses ($\alpha_{12} = \alpha_1$)

Stability and causality

• w and ρ are fixed stability and causality

$$c_{v} = \left(\frac{\partial s}{\partial T}\right) \bigg|_{n_{B}} > 0 \qquad \mu_{BC} = 500 \text{ N}$$

$$\chi_{2}(T, \mu_{B}) = \left(\frac{\partial n_{B}}{\partial \mu_{B}}\right) \bigg|_{T} > 0 \qquad \alpha_{12} = \alpha_{1}$$

$$0 < c_{s}^{2}(T, \mu_{B}) < 1$$

Comparison of Ising-TEXS with BEST EoS

Ising-TExS

$$\mu_{BC} = 35$$
$$\alpha_{12} = 90$$

Ising-TExS 0.6 0.5 0.4 ho _{0.3} 0.2 0.1 0.0 20 0.0 10 15 5 ${\mathcal W}$

$$\mu_{BC} = 3$$
$$\alpha_{12} =$$

[M. K et al arXiv:2402.08636v1]

Summary and Conclusion

Disclaimer! : We don't predict the location of the critical point

- We provide an enhanced coverage for family of EoS with a 3D Ising critical point from $\mu_R = [450 - 700] MeV$ and match lattice at low μ_R .
- mapping
- Ising TExS has ability to be constrained to reproduce physical quark masses
- compare with the data from the Experiment (Beam Energy Scan II)

M. K, Steffen A. Bass, Elena Bratkovskaya, Johannes Jahan, Pierre Moreau, Paolo Parotto, Damien Price, Claudia Ratti, Olga Soloveva and Mikhail Stephanov, arXiv:2402.08636v1

Code

Ising TExS EoS incorporates charge conjunction symmetry inbuilt directly from the Ising -QCD

Ising TExS has adjustable parameters and can used it as input in hydrodynamical simulations to

Thank you for listening !

Backup!

Relationship of TExS with BEST Mapping Formula's $T - T_C = T_C w(r\rho \sin \alpha_1 + h \sin \alpha_2)$

 $\mu_B - \mu_{BC} = T_C w (-r\rho \cos \alpha_1 + h \cos \alpha_2)$

At
$$h = 0$$

 $\tan \alpha_1 = \frac{2\kappa_2(T_C)\mu_{BC}}{T'_{,T}T_C}$
At $r = 0$

 $\tan \alpha'_{12} = \tan \alpha_1 - \tan \alpha_2$

 $\frac{1}{T'_{,T}} \frac{\Delta T'}{\Delta \mu_B} = \frac{\Delta T}{\Delta \mu_B} + \frac{2\kappa_2(T)\mu_B}{T'_{,T}T}$

Other relations can be found from Simple trigonometric relation

