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Phase diagram of QCD

Early Universe The Phases of QCD

£ Future LHC Experiments
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No small parameter for dense cool nuclear matter (everything is of order of
strong scale A ~ 1 GeV)



Contour deformation methods
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Re S increase
= convergent

Re S decrease
= divergent X
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Cauchy theorem: Ci+C,+C3=0
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The goal is to find a
complex contour which
maximizes the sign.

1) Guess:)

2) Optimization over
learnifolds (manifolds
parameterized by neural
networks)

3) Continuous
deformations such as
holomorphic flows
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Morse theory and Lefschetz thimbles

Real manifolds Complex manifolds

dz(t) 65(z2)

Critical points of Morse Thimble: 7, : T

function describe the

topology of the manifold Anti-thimble: _ - dz(t) _ +5S(Z)
TTodt 0z

ReS is Morse function in space of fields 2 = Z NmZm

ImS = const on athimble




Non-relativistic nuclear matter
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AVG6P, AV18 parameterizations

Non-analytic potential

Interesting questions:
1) Fermion sign problem!

2) Real-time dynamics of many
nuclei

3) NN, NNN, NNNN, ... at very
high densities?!



Non-holomorphic actions

. non-analytic if viewed as function of
S(LI?) == CM‘:C‘ complex argument

We only care about restriction
: X >0
to real domain ] 'j

ax x>0
Sr(z) = -

—axr <0

This allows us to analytically
continue on multiple Riemann
sheets
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Consider branch structure of \/(sc — a) (:C + a) when a — (



Modified holomorphic flow

Make sure that the contour is
continuous; branch points must
remain fixed under the flow

a0
dT_Smaa:

Scaling function s(x) must vanish
sufficiently quickly at singularities

Not unique!
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Simple demonstration

S(z) = ilz|?
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Scaling function:
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Simple demonstration
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Not so simple demonstration

Quantum mechanics in one dimension

Initial state:
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Solution of Schrodinger's equation

“Yukawa” potential:
V(z) = g?lale”™!

g* =150 m =10

We are interested in
scattering

In particular, we
compute the
probability of tunneling



Not so simple demonstration

Observable: F(t) = (U;|e Tt Qe HW,)

, t/6
2" order Suzuki-Trotter: et (e_iv(x)%e_ifw‘se_w(x)%)
Identity resolution: I x /dx\:c)(x|

Resulting path integral: F(t) =

... and action:
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Results
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Results
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Conclusions

1) Contour deformations and holomorphic flows
can be applied to certain non-holomorphic
actions

2) However, holomorphic flow is not quite
practical. Learnifolds are perhaps better

3) Study analytic structure of thimbles to find a
better choice of contour?



Thank you!

Scott Lawrence Yukari Yamauchi Jianan Xiao
LANL INT Keio University
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