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QCD Phase Diagram as per Modern Theories and Experiments

RK, VD et al., Theoretical and Experimental
Constraints for the Equation of State of Dense and
Hot Matter (MUSES Collaboration),
arXiv:2303.17021.

RK, VD et al., Modern nuclear and astrophysical
constraints of dense matter in a renormalized chiral
approach , arXiv:2401.12944. 2 / 21
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To include thermal mesons
QCD Phase Diagram as per CMF Model (credits: Angel Nava, University of Houston@MUSES
Collaboration Meeting 2022)
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Chiral Mean-Field (CMF) Model

Quarks and hadrons interactions are mediated via the exchange of scalar (σ, ζ
and δ) and vector (ω, ϕ and ρ) mesons.
A comprehensive equation of state encompassing the baryon octet, decuplet,
and quarks.
CMF is a non-linear extension of the sigma model and is fitted to agree with
low- and high-energy physics data.
Uses Mean-Field Approximation (MFA),i.e., ⟨σ⟩=σ0, ⟨ωµ⟩=ω0 and ⟨πi⟩=0.
CMF uses a Polyakov loop-inspired deconfinement potential to describe the
deconfinement phase transition.
V. A. Dexheimer and S. Schramm, Novel approach to modeling hybrid stars, Phys. Rev. C 81,
045201 (2010).
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Chiral Mean-Field Model

The chiral mean-field Lagrangian is written as

LCMF = Lkin + Lint + Lscal + Lvec + LSB − UΦ.

where Lkin stands for kinetic, Lint for meson-baryon interactions, Lscal for scalar
self interactions, Lvec for vector self interactions, LSB for explicit symmetry
breaking, and UΦ is a Polyakov loop inspired potential may be written as

UΦ =
(
a0T 4 + a1µ4

B + a2T 2µ2
B

)
Φ2 + a3T 4

0 ln
(
1 − 6Φ2 + 8Φ3 − 3Φ4

)
.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral
approach , arXiv:2401.12944.
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Before adding thermal mesons need to fix the vector meson mass
degeneracy

The renormalized (∼) vector meson Lagrangian is
L̃vec = L̃kin

vec + L̃m
vec,

where the kinetic term is

L̃kin
vec = −1

4

((
Ṽ µν

ρ

)2
+
(
Ṽ µν

K∗

)2
+
(
Ṽ µν

ω

)2
+
(
Ṽ µν

ϕ

)2
)

.

The simplest mass term with degenerate mass

L̃m
vec = 1

2m2
V Tr ṼµṼ µ = 1

2m2
V

(
ω̃2 + ϕ̃2 + ρ̃2 + K̃∗2

)
.

The chiral invariant term is added to break the vector nonet mass degeneracy

L̃CI
vec = 1

4µ Tr
[
Ṽµν Ṽ µν ⟨X⟩2

]
.
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Mass degeneracy of vector meson nonet
Comparing the modified renormalized Lagrangian L̃vec = L̃kin

vec + L̃m
vec + L̃CI

vec with
the unrenormalized one Lvec = Lkin

vec + Lm
vec, gives

m2
K∗ = ZK∗m2

V , m2
ω/ρ = Zω/ρm2

V , m2
ϕ = Zϕm2

V ,

ξ̃ = Z
1/2
ξ ξ , ξ = ρ, ω, K∗, ϕ.

Meson ω ρ K∗ ϕ
Old Mass (MeV) 687.33 687.33 687.33 687.33
New Mass (MeV) 770.87 770.87 865.89 1007.76

where

Z−1
ρ = Z−1

ω =
(

1 − µ
σ2

0
2

)
, Z−1

ϕ =
(
1 − µζ2

0

)
, Z−1

K∗ =
(

1 − 1
2µ

(
σ2

0
2 + ζ2

0

))
.
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Self-interaction term for vector mesons
The net vector Lagrangian with the self-interactive term is now

Lvec = Lkin
vec + Lm

vec + LSI
vec .

The different possible chiral invariant renormalized self-interaction (SI) terms of
the vector mesons considered are

RC1: L̃SI
vec = 2g̃4 Tr

(
Ṽ 4
)

,

RC2: L̃SI
vec = g̃4

[
3
2
[
Tr
(
Ṽ 2
)]2

− Tr
(
Ṽ 4
) ]

,

RC3: L̃SI
vec = g̃4

[
Tr
(
Ṽ 2
)]2

,

RC4: L̃SI
vec = g̃4

[Tr(Ṽ )]4

4 .
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Self-interaction term for vector mesons

The renormalized self-interaction term in a simplified version (RC1-RC4) reads

RC1 :LSI
vec = g4

(
ω4 + 6 Zρ

Zω
ω2ρ2 +

(
Zρ

Zω

)2
ρ4 + 2

(
Zϕ

Zω

)2
ϕ4
)

,

RC2 :LSI
vec = g4

(
ω4 +

(
Zρ

Zω

)2
ρ4 +

(
Zϕ

Zω

)2 ϕ4

2 + 3
(

Zρ

Zω

Zϕ

Zω

)
ρ2ϕ2 + 3

(
Zϕ

Zω

)
ω2ϕ2

)
,

RC3 :LSI
vec = g4

(
ω4 + 2 Zρ

Zω
ω2ρ2 +

(
Zρ

Zω

)2
ρ4 + 2 Zϕ

Zω
ω2ϕ2 +

(
Zϕ

Zω

)2
ϕ4 + 2

(
Zρ

Zω

Zϕ

Zω

)
ρ2ϕ2

)
,

RC4 :LSI
vec = g4

(
ω4 + 2

√
2
(

Zϕ

Zω

)1/2
ω3ϕ + 3

(
Zϕ

Zω

)
ω2ϕ2 +

√
2
(

Zϕ

Zω

)3/2
ωϕ3 + 1

4

(
Zϕ

Zω

)2
ϕ4
)

.

The renormalization process required us to refit our model to the nuclear
saturation properties, the latest first principle theories, and observational
constraints.
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Parameters used to fit the constraints

Parameter Term Used to constrain

gV
1 , gV

8 , αV , g4 Lint+LSI
vec gNϕ = 0, gV

1 =
√

6gV
8 , nsat ≈ 0.15 fm −3, Bsat/A ≈ −15.70 MeV,

Esat
sym ≈ 28.9 MeV, 66 ≤ Lsat(MeV) ≤ 87, 275 ≤ K(MeV) ≤ 305

mV , µ Lm
vec+ LCI

vec mω = 770.87 MeV, mρ = 770.87 MeV, mϕ = 1007.76 MeV

m3 LSB UΛ ≈ −28 MeV

a0 T d
c ≈ 270 MeV

a1 nd
B,c ≈ 3.5 nsat

a2 T HQ
c > 135 MeV, µB,c > 400 MeV

a3 UΦ Φ ∈ 0, 1

T0(gauge) T d
c , Φ ∈ 0, 1

T0(quarks) T p
c ≈ 159 MeV, Φ ∈ 0, 1

gqΦ, gBΦ T p
c
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Deconfinement phase transition for the pure gauge case for different
renormalized couplings (RCs) at µB = 0
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Uncertainty Band from Lattice QCD

First order phase transition indicating the
deconfined gluons at T ∼ 270 MeV.
G. Boyd et al., Thermodynamics of SU(3)
lattice gauge theory, Nucl. Phys. B 469, 419
(1996)

In CMF model, mesons exchange and Φ
fields mimics the deconfined gluons.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral
approach , arXiv:2401.12944.
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Crossover transition temperature represented by the change in σ and
Φ for different RCs at µB = µS = µQ = 0
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From lattice QCD, the pseudo critical
transition temperature T p

c =158 ± 0.6 MeV.
S. Borsanyi et al., QCD Crossover at Finite
Chemical Potential from Lattice Simulations,
Phys. Rev. Lett. 125, 052001 (2020)

In the CMF model, the maximum change
in the order parameter ( dσ

dT
∼ dΦ

dT
) occurs

around T p
c =161 MeV for all RCs.

In the previous CMF fit, T p
c =171 MeV for

C4.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral
approach , arXiv:2401.12944.
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Hadron-quark as well as liquid-gas coexistence lines and respective
critical points for µQ = 0 and zero net strangeness
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As per lattice QCD results, µBc > 300
MeV, with T HQ

c < 132+3
−6 MeV.

S. Borsanyi et al., QCD Crossover at Finite
Chemical Potential from Lattice Simulations,
Phys. Rev. Lett. 125, 052001 (2020)
H. T. Ding et al. (HotQCD), Chiral Phase
Transition Temperature in ( 2+1 )-Flavor
QCD, Phys. Rev. Lett. 123, 062002 (2019)

From old CMF fit, µBc = 354 MeV and
T HQ

c = 167 MeV.

We get critical point of LG phase transition
T LG

c ≈ 16 MeV.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral
approach , arXiv:2401.12944. 14 / 21
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Equation of state for neutron-star matter at T = 0 for different RCs.
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EoS is beta equilibrated and charge neutral.
“*’ means no hyperons.
A smaller number density jump during the
phase transition compared to the old C4
scheme is obtained.
A lower value of nd

B,c ≈ 3.4 nsat is obtained.
the RC4 coupling schemes exhibit stiffer
pressures compared to the old C4 scheme.
In the RC4 coupling scheme the stiffness is
almost the same, independently of the
presence of hyperons.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral
approach , arXiv:2401.12944.
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Mass-radius curve for neutron star matter with different renormalized
vector couplings
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Including the EoS with a large jump would
show a kink (instability) in the MR
diagram therefore it is shown for only
hadronic matter.
This problem can be solved by the different
choice of deconfinement potential.
Without hyperons, we observe that RC4
yields the highest Mmax..
Inclusion of hyperons results in a slight
reduction in Mmax for RC4, but it still
remains higher than the other coupling
schemes.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral
approach , arXiv:2401.12944. 16 / 21
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Conclusions

Fixed the vector mesons mass degeneracy through renormalization of vector
meson fields.
This paves the way for the addition of interacting mesons within the CMF
model.
Refitted the model using constraints from lattice QCD, stellar observations,
and nuclear physics.
Redefinition of vector fields plays a significant role in reproducing neutron
stars with higher masses compared to the previous fit.
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Estimation of error in the model

Adding interacting thermal mesons’ contribution will improve the constraints
reproduced within the model, especially at finite T and µB.
Low-energy nuclear physics observations are not well-constrained, therefore
more wider range of constraints should be studied.
RK, VD et al., Effects of hyperon potentials and symmetry energy in quark deconfinement , Physics
Letters B 849, 138475 (2024).

Optimizing CMF code by transforming it into C++ from Fortran within
MUSES (with Nikolas Cruz from UIUC).
Use statistical methods, such as Bayesian analysis, to constrain model
parameters within the MUSES collaboration (See Claudia’s talk for more
about MUSES).
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Outlook

Add fluctuations in the CMF model by going beyond mean-field
approximation within the NP3M collaboration (with Joaquin Grefa, KSU).
Add in-medium meson masses and thermal meson condensation at low
temperatures.
Comparison of partial pressure of mesons from lattice QCD.

Regulating the meson contribution in the quark phase

M∗
B = gBσσ + gBδτ3δ + gBζζ + M0B + gBΦΦ2.

M∗
q = gqσσ + gqδτ3δ + gqζζ + M0q + gqΦ(1 − Φ).

M∗
M (Φ) =?
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Backup: Accessing the stability of neutron star
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The speed of hadron↔quark conversion,
which could in turn make hybrid stars
unstable.
If the surface tension of quark matter is
below a certain threshold, a mixture of
phases appears, which enhances stellar
stability.
Alternatively, by altering the deconfined
potential (for example, from a1µ4

B to a′
1µ2

B)
to make it less responsive to the µB .
This facilitates producing stable hybrid
stars without mixed phases with small
jump.
V. Dexheimer et al., GW190814 as a massive

rapidly rotating neutron star with exotic
degrees of freedom, Phys. Rev. C 103, 025808
(2021)
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