Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach

Rajesh Kumar¹,

Yuhan Wang¹, Nikolas Cruz Camacho, Arvind Kumar, Jacquelyn Noronha-Hostler, Veronica Dexheimer¹

¹Center for Nuclear Research, Department of Physics, Kent State University, OH

Winter Workshop on Nuclear Dynamics 2024, Jackson WY February 15, 2024

Motivation	Renormalization in Chiral Mean-Field Model	$\operatorname{Results}_{00000}$	Conclusions	Outlook
00	0000000		00	000
Plan of pres	entation			

1 Motivation

2 Renormalization in Chiral Mean-Field Model

3 Results

4 Conclusions

6 Outlook

QCD Phase Diagram as per Modern Theories and Experiments

RK, VD et al., Theoretical and Experimental Constraints for the Equation of State of Dense and Hot Matter (MUSES Collaboration), arXiv:2303.17021.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach , arXiv:2401.12944.

Motivation		Outlook
00		

To include thermal mesons

QCD Phase Diagram as per CMF Model (credits: Angel Nava, University of Houston@MUSES Collaboration Meeting 2022)

Motivation	Renormalization in Chiral Mean-Field Model	Results	$\begin{array}{c} \text{Conclusions} \\ \text{OO} \end{array}$	Outlook
00	●0000000	00000		000
Chiral Mear	n-Field (CMF) Model			

- Quarks and hadrons interactions are mediated via the exchange of scalar (σ , ζ and δ) and vector (ω , ϕ and ρ) mesons.
- A comprehensive equation of state encompassing the baryon octet, decuplet, and quarks.
- CMF is a non-linear extension of the sigma model and is fitted to agree with low- and high-energy physics data.
- Uses Mean-Field Approximation (MFA), i.e., $\langle \sigma \rangle = \sigma^0$, $\langle \omega_{\mu} \rangle = \omega^0$ and $\langle \pi_i \rangle = 0$.
- CMF uses a Polyakov loop-inspired deconfinement potential to describe the deconfinement phase transition.

V. A. Dexheimer and S. Schramm, Novel approach to modeling hybrid stars, Phys. Rev. C 81, 045201 (2010).

Chiral Mean-Field Model	Motivation 00	Renormalization in Chiral Mean-Field Model $0 \bullet 000000$	Results 00000	Conclusions 00	Outlook 000
	Chiral Mear	-Field Model			

The chiral mean-field Lagrangian is written as

$$\mathcal{L}_{\text{CMF}} = \mathcal{L}_{\text{kin}} + \mathcal{L}_{\text{int}} + \mathcal{L}_{\text{scal}} + \mathcal{L}_{\text{vec}} + \mathcal{L}_{\text{SB}} - U_{\Phi}.$$

where \mathcal{L}_{kin} stands for kinetic, \mathcal{L}_{int} for meson-baryon interactions, \mathcal{L}_{scal} for scalar self interactions, \mathcal{L}_{vec} for vector self interactions, \mathcal{L}_{SB} for explicit symmetry breaking, and U_{Φ} is a Polyakov loop inspired potential may be written as

$$U_{\Phi} = \left(a_0 T^4 + a_1 \mu_B^4 + a_2 T^2 \mu_B^2\right) \Phi^2 + a_3 T_0^4 \ln\left(1 - 6\Phi^2 + 8\Phi^3 - 3\Phi^4\right).$$

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach , arXiv: 2401.12944.

Motivation	Renormalization in Chiral Mean-Field Model	Results	$\begin{array}{c} \text{Conclusions} \\ \text{oo} \end{array}$	Outlook
00	oo●ooooo	00000		000
Chiral Mear	n-Field Model			

The chiral mean-field Lagrangian is written as

$$\mathcal{L}_{\mathrm{CMF}} = \mathcal{L}_{\mathrm{kin}} + \mathcal{L}_{\mathrm{int}} + \mathcal{L}_{\mathrm{scal}} + \mathcal{L}_{\mathrm{Vec}} + \mathcal{L}_{\mathrm{SB}} - U_{\Phi}.$$

where \mathcal{L}_{kin} stands for kinetic, \mathcal{L}_{int} for meson-baryon interactions, \mathcal{L}_{scal} for scalar self interactions, \mathcal{L}_{vec} for vector self interactions, \mathcal{L}_{SB} for explicit symmetry breaking, and U_{Φ} is a Polyakov loop inspired potential may be written as

$$U_{\Phi} = \left(a_0 T^4 + a_1 \mu_B^4 + a_2 T^2 \mu_B^2\right) \Phi^2 + a_3 T_0^4 \ln\left(1 - 6\Phi^2 + 8\Phi^3 - 3\Phi^4\right).$$

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach , arXiv: 2401.12944.

Motivation	Renormalization in Chiral Mean-Field Model	Results	Conclusions	Outlook
00	0000000	00000	00	000

Before adding thermal mesons need to fix the vector meson mass degeneracy

The renormalized (\sim) vector meson Lagrangian is

$$\tilde{\mathcal{L}}_{\rm vec} = \tilde{\mathcal{L}}_{\rm vec}^{\rm kin} + \tilde{\mathcal{L}}_{\rm vec}^{\rm m},$$

where the kinetic term is

$$\tilde{\mathcal{L}}_{\rm vec}^{\rm kin} = -\frac{1}{4} \left(\left(\tilde{V}_{\rho}^{\mu\nu} \right)^2 + \left(\tilde{V}_{K^*}^{\mu\nu} \right)^2 + \left(\tilde{V}_{\omega}^{\mu\nu} \right)^2 + \left(\tilde{V}_{\phi}^{\mu\nu} \right)^2 \right).$$

The simplest mass term with degenerate mass

$$\tilde{\mathcal{L}}_{\rm vec}^m = \frac{1}{2}m_V^2 \operatorname{Tr} \tilde{V}_{\mu} \tilde{V}^{\mu} = \frac{1}{2}m_V^2 \left(\tilde{\omega}^2 + \tilde{\phi}^2 + \tilde{\rho}^2 + \tilde{K}^{*2}\right).$$

The chiral invariant term is added to break the vector nonet mass degeneracy

$$\tilde{\mathcal{L}}_{\rm vec}^{\rm CI} = \frac{1}{4} \mu \, {\rm Tr} \left[\tilde{V}_{\mu\nu} \tilde{V}^{\mu\nu} \, \langle X \rangle^2 \right].$$

Motivation Renormalization in Chiral Mean-Field Model Results	Conclusions	Outlook
00 00000000 0000	00	000

Mass degeneracy of vector meson nonet

Comparing the modified renormalized Lagrangian $\tilde{\mathcal{L}}_{vec} = \tilde{\mathcal{L}}_{vec}^{kin} + \tilde{\mathcal{L}}_{vec}^{m} + \tilde{\mathcal{L}}_{vec}^{CI}$ with the unrenormalized one $\mathcal{L}_{vec} = \mathcal{L}_{vec}^{kin} + \mathcal{L}_{vec}^{m}$, gives

$$\begin{split} m_{K^*}^2 &= Z_{K^*} m_V^2, \quad m_{\omega/\rho}^2 = Z_{\omega/\rho} m_V^2, \quad m_{\phi}^2 = Z_{\phi} m_V^2, \\ \tilde{\xi} &= Z_{\xi}^{1/2} \xi, \quad \xi = \rho, \omega, K^*, \phi. \end{split}$$

Meson	ω	ho	K^*	ϕ
Old Mass (MeV)	687.33	687.33	687.33	687.33
New Mass (MeV)	770.87	770.87	865.89	1007.76

where

$$Z_{\rho}^{-1} = Z_{\omega}^{-1} = \left(1 - \mu \frac{\sigma_0^2}{2}\right), \quad Z_{\phi}^{-1} = \left(1 - \mu \zeta_0^2\right), \quad Z_{K^*}^{-1} = \left(1 - \frac{1}{2}\mu \left(\frac{\sigma_0^2}{2} + \zeta_0^2\right)\right).$$

Motivation	Renormalization in Chiral Mean-Field Model	Results	Conclusions	Outlook
00	00000000	00000	00	000
Self-interact	tion term for vector mesons			

The net vector Lagrangian with the self-interactive term is now

$$\mathcal{L}_{\mathrm{vec}} = \mathcal{L}_{\mathrm{vec}}^{\mathrm{kin}} + \mathcal{L}_{\mathrm{vec}}^{\mathrm{m}} + \mathcal{L}_{\mathrm{vec}}^{\mathrm{SI}}$$
.

The different possible chiral invariant renormalized self-interaction (SI) terms of the vector mesons considered are

^RC1:
$$\tilde{\mathcal{L}}_{\text{vec}}^{\text{SI}} = 2\tilde{g}_4 \operatorname{Tr}\left(\tilde{V}^4\right),$$

^RC2: $\tilde{\mathcal{L}}_{\text{vec}}^{\text{SI}} = \tilde{g}_4 \left[\frac{3}{2} \left[\operatorname{Tr}\left(\tilde{V}^2\right)\right]^2 - \operatorname{Tr}\left(\tilde{V}^4\right)\right],$
^RC3: $\tilde{\mathcal{L}}_{\text{vec}}^{\text{SI}} = \tilde{g}_4 \left[\operatorname{Tr}\left(\tilde{V}^2\right)\right]^2,$
^RC4: $\tilde{\mathcal{L}}_{\text{vec}}^{\text{SI}} = \tilde{g}_4 \frac{[\operatorname{Tr}(\tilde{V})]^4}{4}.$

Motivation	Renormalization in Chiral Mean-Field Model	Results	Conclusions	Outlook
00	000000€0	00000	00	000
Self-interact	ion term for vector mesons			

The renormalized self-interaction term in a simplified version (^RC1-^RC4) reads

$${}^{\mathrm{R}}\mathrm{C1} : \mathcal{L}_{\mathrm{vec}}^{\mathrm{SI}} = g_4 \left(\omega^4 + 6\frac{Z_{\rho}}{Z_{\omega}} \omega^2 \rho^2 + \left(\frac{Z_{\rho}}{Z_{\omega}}\right)^2 \rho^4 + 2\left(\frac{Z_{\phi}}{Z_{\omega}}\right)^2 \phi^4 \right),$$

$${}^{\mathrm{R}}\mathrm{C2} : \mathcal{L}_{\mathrm{vec}}^{\mathrm{SI}} = g_4 \left(\omega^4 + \left(\frac{Z_{\rho}}{Z_{\omega}}\right)^2 \rho^4 + \left(\frac{Z_{\phi}}{Z_{\omega}}\right)^2 \frac{\phi^4}{2} + 3\left(\frac{Z_{\rho}}{Z_{\omega}}\frac{Z_{\phi}}{Z_{\omega}}\right) \rho^2 \phi^2 + 3\left(\frac{Z_{\phi}}{Z_{\omega}}\right) \omega^2 \phi^2 \right),$$

$${}^{\mathrm{R}}\mathrm{C3} : \mathcal{L}_{\mathrm{vec}}^{\mathrm{SI}} = g_4 \left(\omega^4 + 2\frac{Z_{\rho}}{Z_{\omega}} \omega^2 \rho^2 + \left(\frac{Z_{\rho}}{Z_{\omega}}\right)^2 \rho^4 + 2\frac{Z_{\phi}}{Z_{\omega}} \omega^2 \phi^2 + \left(\frac{Z_{\phi}}{Z_{\omega}}\right)^2 \phi^4 + 2\left(\frac{Z_{\rho}}{Z_{\omega}}\frac{Z_{\phi}}{Z_{\omega}}\right) \rho^2 \phi^2 \right),$$

$${}^{\mathrm{R}}\mathrm{C4} : \mathcal{L}_{\mathrm{vec}}^{\mathrm{SI}} = g_4 \left(\omega^4 + 2\sqrt{2} \left(\frac{Z_{\phi}}{Z_{\omega}}\right)^{1/2} \omega^3 \phi + 3\left(\frac{Z_{\phi}}{Z_{\omega}}\right) \omega^2 \phi^2 + \sqrt{2} \left(\frac{Z_{\phi}}{Z_{\omega}}\right)^{3/2} \omega \phi^3 + \frac{1}{4} \left(\frac{Z_{\phi}}{Z_{\omega}}\right)^2 \phi^4 \right).$$

The renormalization process required us to refit our model to the nuclear saturation properties, the latest first principle theories, and observational constraints.

Renormalization in Chiral Mean-Field Model 0000000●	$\underset{00000}{\text{Results}}$	$\begin{array}{c} \text{Conclusions} \\ \text{oo} \end{array}$

Parameters used to fit the constraints

Parameter	Term	Used to constrain
$g_1^V,g_8^V,lpha_V,g_4$	$\mathcal{L}_{\mathrm{int}} {+} \mathcal{L}_{\mathrm{vec}}^{\mathrm{SI}}$	$g_{N\phi} = 0, g_1^V = \sqrt{6} g_8^V, n_{\rm sat} \approx 0.15 \ {\rm fm}^{-3}, B^{\rm sat}/A \approx -15.70 \ {\rm MeV},$
		$E_{\mathrm{sym}}^{\mathrm{sat}}\approx 28.9~\mathrm{MeV}, 66 \leq L^{\mathrm{sat}}(\mathrm{MeV}) \leq 87, 275 \leq K(\mathrm{MeV}) \leq 305$
m_V,μ	$\mathcal{L}_{\mathrm{vec}}^{\mathrm{m}} + \mathcal{L}_{\mathrm{vec}}^{\mathrm{CI}}$	$m_{\omega}=770.87~{\rm MeV},m_{\rho}=770.87~{\rm MeV},m_{\phi}=1007.76~{\rm MeV}$
m_3	$\mathcal{L}_{ ext{SB}}$	$U_{\Lambda} \approx -28 \text{ MeV}$
a_0		$T_c^d \approx 270 {\rm ~MeV}$
a_1		$n^d_{B,c}pprox 3.5\;n_{ m sat}$
a_2		$T_c^{\rm HQ} > 135 \text{ MeV}, \mu_{B,c} > 400 \text{ MeV}$
a_3	U_{Φ}	$\Phi\in 0,1$
$T_0(\text{gauge})$		$T^d_c,\Phi\in 0,1$
$T_0({ m quarks})$		$T_c^p \approx 159 \text{ MeV}, \ \Phi \in 0, 1$
$g_{q\Phi},g_{B\Phi}$		T^p_c

Renormalization in Chiral Mean-Field Model

Deconfinement phase transition for the pure gauge case for different renormalized couplings (RCs) at $\mu_B = 0$

• First order phase transition indicating the deconfined gluons at T ~ 270 MeV.

G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys. B 469, 419 (1996)

• In CMF model, mesons exchange and Φ fields mimics the deconfined gluons.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach , arXiv:2401.12944.

- From lattice QCD, the pseudo critical transition temperature T^p_c=158 ± 0.6 MeV.
 S. Borsanyi et al., QCD Crossover at Finite Chemical Potential from Lattice Simulations, Phys. Rev. Lett. 125, 052001 (2020)
- In the CMF model, the maximum change in the order parameter $\left(\frac{d\sigma}{dT} \sim \frac{d\Phi}{dT}\right)$ occurs around $T_c^p = 161$ MeV for all RCs.
- In the previous CMF fit, $T_c^p = 171$ MeV for C4.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach , arXiv:2401.12944.

Motivation Renormalization in Chiral Mean-Field Model Results Conclusions Con

• As per lattice QCD results, $\mu_{B_c} > 300$ MeV, with $T_c^{HQ} < 132^{+3}_{-6}$ MeV.

S. Borsanyi et al., QCD Crossover at Finite Chemical Potential from Lattice Simulations, Phys. Rev. Lett. 125, 052001 (2020)

H. T. Ding et al. (HotQCD), Chiral Phase Transition Temperature in (2+1)-Flavor QCD, Phys. Rev. Lett. 123, 062002 (2019)

- From old CMF fit, $\mu_{B_c} = 354$ MeV and $T_c^{HQ} = 167$ MeV.
- We get critical point of LG phase transition $T_c^{\rm LG} \approx 16$ MeV.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach , arXiv:2401.12944.

Motivation	Renormalization in Chiral Mean-Field Model	Results	Conclusions	$\operatorname{Outlook}_{000}$
00	00000000	000€0	00	

- EoS is beta equilibrated and charge neutral.
- "*' means no hyperons.
- A smaller number density jump during the phase transition compared to the old C4 scheme is obtained.
- A lower value of $n_{B,c}^d \approx 3.4 \ n_{\text{sat}}$ is obtained.
- the ^RC4 coupling schemes exhibit stiffer pressures compared to the old C4 scheme.
- In the ^RC4 coupling scheme the stiffness is almost the same, independently of the presence of hyperons.

RK, *VD* et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach , arXiv:2401.12944.

Mass-radius curve for neutron star matter with different renormalized vector couplings

- Including the EoS with a large jump would show a kink (instability) in the MR diagram therefore it is shown for only hadronic matter.
- This problem can be solved by the different choice of deconfinement potential.
- Without hyperons, we observe that ^RC4 yields the highest M_{max} ..
- Inclusion of hyperons results in a slight reduction in M_{max} for ^RC4, but it still remains higher than the other coupling schemes.

RK, VD et al., Modern nuclear and astrophysical constraints of dense matter in a renormalized chiral approach , arXiv:2401.12944.

Motivation	Renormalization in Chiral Mean-Field Model	Results	Conclusions	Outlook
00	0000000	00000	•0	000
Conclusions				

- Fixed the vector mesons mass degeneracy through renormalization of vector meson fields.
- This paves the way for the addition of interacting mesons within the CMF model.
- Refitted the model using constraints from lattice QCD, stellar observations, and nuclear physics.
- Redefinition of vector fields plays a significant role in reproducing neutron stars with higher masses compared to the previous fit.

Motivation	Renormalization in Chiral Mean-Field Model	Results	$\underset{O \bullet}{\text{Conclusions}}$	Outlook
oo	00000000	00000		000
Estimation of	of error in the model			

- Adding interacting thermal mesons' contribution will improve the constraints reproduced within the model, especially at finite T and μ_B .
- Low-energy nuclear physics observations are not well-constrained, therefore more wider range of constraints should be studied.

RK, VD et al., Effects of hyperon potentials and symmetry energy in quark deconfinement, Physics Letters B 849, 138475 (2024).

- Optimizing CMF code by transforming it into C++ from Fortran within MUSES (with Nikolas Cruz from UIUC).
- Use statistical methods, such as Bayesian analysis, to constrain model parameters within the MUSES collaboration (See Claudia's talk for more about MUSES).

Motivation	Renormalization in Chiral Mean-Field Model	Results	Conclusions	$\begin{array}{c} \operatorname{Outlook} \\ \bullet \circ \circ \end{array}$
00	00000000	00000	00	
Outlook				

- Add fluctuations in the CMF model by going beyond mean-field approximation within the NP3M collaboration (with Joaquin Grefa, KSU).
- Add in-medium meson masses and thermal meson condensation at low temperatures.
- Comparison of partial pressure of mesons from lattice QCD.

Regulating the meson contribution in the quark phase

$$M_B^* = g_{B\sigma}\sigma + g_{B\delta}\tau_3\delta + g_{B\zeta}\zeta + M_{0_B} + g_{B\Phi}\Phi^2.$$

$$M_q^* = g_{q\sigma}\sigma + g_{q\delta}\tau_3\delta + g_{q\zeta}\zeta + M_{0_q} + g_{q\Phi}(1-\Phi).$$

$$M_M^*(\Phi) =?$$

Renormalization in Chiral Mean-Field Mode

Result

onclusions S Outlook 0●0

Acknowledgements

Motivation 00

Renormalization in Chiral Mean-Field Model

Resul 00000 Conclusio 00 Outlook 00●

Backup: Accessing the stability of neutron star

- The speed of hadron⇔quark conversion, which could in turn make hybrid stars unstable.
- If the surface tension of quark matter is below a certain threshold, a mixture of phases appears, which enhances stellar stability.
- Alternatively, by altering the deconfined potential (for example, from $a_1 \mu_B^4$ to $a'_1 \mu_B^2$) to make it less responsive to the μ_B .
- This facilitates producing stable hybrid stars without mixed phases with small jump.

V. Dexheimer et al., GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom, Phys. Rev. C 103, 025808 (2021)