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Relativistic Nuclear Collisions

In relativistic nuclear collisions, a strongly-
coupled, hot and dense matter is created 
that behaves as a nearly “perfect liquid”

A A

• What is the fundamental degree 
of freedom of this matter?

• What is the nature of the phase 
transition? A critical end point?

Can we directly constrain the 
equation of state (EOS)?
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Thermodynamics and the equation of state

𝑓 𝑃, 𝑉, 𝑇 = 0

A thermodynamic equation that relates state variables (P, E, S, V, T):

The EoS usually studied by measuring Var1 vs. Var2 with Var3 fixed. 

Ø Classical ideal gas: 𝑃𝑉 − 𝑁𝑅𝑇 = 0

Ø Black body (massless particle or photon gas):

𝐸
𝑉 − 𝜎𝑇

! = 0, 𝑃 −
1
3𝜎𝑇

! = 0,
𝑆
𝑉 −
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3𝜎𝑇
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The equation of state (EoS) of hot QCD matter

QCD has predicted a deconfined state 
at high T. Can we directly test it?

To constrain the EoS, need to measure 
two thermodynamic quantities at a time 
with a third one fixed.

However, p, 𝜀, or s, and T, V all vary as a 
function of time in AA collisions.

Lattice QCD at 𝜇!~0 

HotQCD collaboration
PRD 90 (2014) 094503

19
12𝜋

!



Direct precise experimental constraint of EoS still lacking

Bayesian analysis (2015)

PRL 114 (2015) 202301

Speed of sound in a relativistic fluid:

Direct constraint on the 
equation of state

Shock wave
when v>cs𝑐" =

𝜕𝑃
𝜕𝜀

The speed of sound

2+1 flavor 

HotQCD collaboration
PRD 90 (2014) 094503

Lattice QCD prediction 
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1
3

𝑃 = (1/3)𝜀



Thermodynamics of hot QCD matter
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The medium at freezeout of entropy S and energy E → 
a uniform fluid at rest with an effective Veff and Teff



Speed of sound:

The medium at freezeout of entropy S and energy E → 
a uniform fluid at rest with an effective Veff and Teff

Thermodynamics of hot QCD matter
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Teff  ~ <pT>/3 
S ~ Nch



Speed of sound:

Thermodynamics of hot QCD matter
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Teff  ~ <pT>/3 
S ~ Nch

Using ALICE 2.76 & 5.02 
TeV <pT>, dNch/d𝜂 dataLarge uncertainties on the early work and energy 

dependence of <pT> and Nch not unique in AA, either

The medium at freezeout of entropy S and energy E → 
a uniform fluid at rest with an effective Veff and Teff



The effective temperature, Teff and <pT>
What Teff is NOT:
• Not freezeout temperature (BW fits), as it also 

includes kinetic energy (radial flow)
• Not time-averaged temperature (e.g., photons)
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Teff  is the initial temperature T0 of QGP if the total energy 
all the way to the freezeout is conserved and measured.

However, only a slice of QGP fluid in AA is measured with 
a built-in longitudinal expansion. Because of negative work 
by the longitudinal pressure, 

Teff ≤	T0, or a lower limit of T0

Teff  is found to be ~ <pT>/3 from hydrodynamic simulations.
 (If PID available, Teff  ~ <KET>/3, to be more precise)



Work in 80s to relate <pT> with T
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Very early attempt in relating <pT> 
with temperature to probe the EoS 
and possible a phase transition! 



b ≈ 0

Centrality – a control of impact 
parameter (b), volume and geometry
Ø Experimentally determined by 

final-state total energy or multiplicity

Ultra-Central Collisions (UCC) – b→0 
e.g., 0-1% centrality, where the volume 
or geometry stop varying, but total 
energy or entropy can still fluctuate

Rare events!

Centrality and Ultra-central collisions

Transverse energy sum in the HFs, 𝐸#,%&'() Anisotropy flow in UCC events, CMS, JHEP 02 (2014) 088

UCC
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A nontrivial prediction by hydrodynamics on a simple observable 
that can put directly constraints on the equation of state

Impact parameter (b)

Entropy density (s), # of charged particles (Nch)

= d#
d$ =

d ln'
d ln( = d ln )!

d ln*"#!+,
b ≈ 0

Te
m

pe
ra

tu
re

 (T
 ≈

. $
/0

)

Extracting the Speed of Sound in UCC
Proposed by Gardim et. al. PLB 809 (2020) 135749

UCC

𝒑𝑻
𝒑𝑻 𝟎~

𝑵𝒄𝒉
𝑵𝒄𝒉𝟎

𝒄𝒔𝟐
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Central PbPb event
Up to 20,000 particles produced

ZDCZDC HF HF

ZDC used for rejecting PU events
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Observables and measurements

In each EHF
T,sum bin, the POI pT spectra for tracks |𝜂|<0.5 and pT>0.3 GeV is 

measured with efficiency correction and extrapolation to pT>0 
• A subtle dependence of efficiency on the multiplicity is accounted for
<pT> and Nch are obtained from the mean and integral of corrected spectra.

TrackerHF HF

Centrality estimator

Particle of Interest (POI) for 
<pT> and Nch measurements
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Extrapolation to the full pT range
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Extrapolated <p

m is fixed at pion mass, rest are free parameters

Hagedorn function used to 
extrapolate the full pT phase space:

Contributes to ~4% systematic uncertainty on the extracted 𝑐&' in the data 

Extrapolated <pT> agrees with the 
true value in HYDJET at 0.5% level. 
Similar conclusion when tested using 
TRAJECTUM pT spectra.
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A few remarks
• The full pT range is required. Otherwise, extracted 𝑐&' is smaller.
• Phase space for 𝑐&'	extraction and centrality estimator separated in rapidity
• Total energy, instead of multiplicity, centrality estimator preferred
• Self-normalized observables to minimize systematic uncertainties
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A few remarks

• 𝒑𝑻 𝐧𝐨𝐫𝐦 = ,#
,# $ 	 vs. 𝑵𝒄𝒉𝐧𝐨𝐫𝐦 = -%&

-%&
$

• 𝒑𝑻 𝟎 (for estimating 𝑇.//)

Observables in this work:

The reference 𝑝0 1, 𝑁231  chosen from the 0-5% centrality 

Systematic uncertainties: 1) efficiency correction; 2) pT extrapolation; 3) fit range for 𝑐!" 

• The full pT range is required. Otherwise, extracted 𝑐&' is smaller.
• Phase space for 𝑐&'	extraction and centrality estimator separated in rapidity
• Total energy, instead of multiplicity, centrality estimator preferred
• Self-normalized observables to minimize systematic uncertainties
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Theoretical Predictions
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Trajectum model
Gardim et. al. model

PbPb 5.02 TeV

Significant increase of <pT> toward 
UCC events predicted by both models 
with similar slopes at very high Nch

A dip at Nch ~ 1.05 Nch(0-5%) 
present in TRAJECTUM but not 
Gardim et. al. The origin is unclear.

Both are hydro. models using Lattice 
QCD EoS. Differences in details.
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Extracting the speed of sound

A dip at Nch ~ 1.05 Nch (0-5%) clearly observed also in the data
Significant increase of <pT> toward UCC events observed, as predicted
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Extracting the speed of sound

A dip at Nch ~ 1.05 Nch (0-5%) clearly observed also in the data
Significant increase of <pT> toward UCC events observed, as predicted
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Extracting the speed of sound
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The 𝑐&' extracted by fitting:

, where

at 𝑇!"" = 𝑝# $/3 = 219 ± 8 MeV



Multiplicity fluctuations in UCC
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PRC 97, 014905 (2018)

– multiplicity distribution at fixed b

Fit by , where

b ≈ 0

Excellent description by the model fit!
23

PRC 97, 014905 (2018)



Choices of centrality estimator

24

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0
ch/NchN

0.995

1

1.005

1.01

1.015

1.02

1.025

0 〉 Tp〈/〉 Tp〈 

Centrality estimator

|<5)η(3<|T,sum
HFE

>0.3 GeV)
T

|<2.4, pη(1<|trkN

) 5.02 TeV-1PbPb (0.607 nb

|<0.5η>0 GeV (extrapolated), |
T

p

Supplementary CMS

TrackerHF HF

Centrality estimator

POI

TrackerHF HF

Centrality estimator

POI

vs.

Slopes at very high Nch largely 
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Constraining the QCD Equation of State
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Precise determination of the speed of sound of the hot medium created in AA
Good agreement with lattice QCD, where a deconfined phase is predicted.
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Outlook

To vary Teff at LHC energies,
• 2.76, 5.02, 5.36 TeV
• Rapidity dependence – a few % variation over 2-3 units
• A short run at injection energy, 355 GeV?
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Outlook

To vary Teff at LHC energies,
• 2.76, 5.02, 5.36 TeV
• Rapidity dependence – a few % variation over 2-3 units
• A short run at injection energy, 355 GeV?
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BES to look for any 
non-monotonic trend?
(nB also contributes)
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Outlook

?
Even higher Teff in pPb than PbPb

QGPs that are drastically different in size
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Summary
Precise extraction of the speed of sound with ultra-central PbPb events:

Good agreement with lattice QCD at 𝜇!~0, providing direct evidence for a 
deconfined phase at high temperatures.
Future measurements at other energies and in small systems, in comparison 
with theoretical models, promising to mapping out the QCD Phase diagram.
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at 𝑇!"" = 𝑝# = 219 ± 8 MeV
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Backups
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Extrapolation to the full pT range

Contributes to ~4% systematic uncertainty on the extracted 𝑐&' in the data 
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HF Energy Sum (GeV)
0 2000 4000 6000

ZD
C

 E
ne

rg
y 

Su
m

 (a
.u

.)

0

100

200

300

400

1

10

210

310

410
CMS Preliminary

 = 2.76 TeVNNsPbPb  



What is the state of matter inside the neutron star? 

Large uncertainties in EoS and cs

Astro phys. J. Lett. 939 (2022) 2, L34

The speed of sound
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Cold atoms: Dense QCD matter:

Broad interests in sound wave propagation within strongly correlated systems!

Sound wave near Feshbach resonance

PRL 98, 170401 (2007)


