

Recent open Heavy Flavour results from ALICE

Deepa Thomas

39th Winter Workshop on Nuclear Dynamics 11-17 February 2024

Introduction

- Heavy quarks (charm and beauty) are primarily produced in hard scattering processes with large momentum transfer
- Production cross-sections is calculated in pQCD by the convolution of 3 ingredients utilizing a factorization approach.

Fractorization theorem

Initial condition from data

$$\frac{d\sigma^{\rm D}}{dp_T^{\rm D}}(\mu_F,\mu_R) = PDF(x_1) \ PDF(x_2) \ \times \ \frac{d\sigma^{\rm c}}{dp_T^{\rm c}} \ \times \ D_{\rm c\to D}(z=p_{\rm D}/p_{\rm c})$$

Measurements of heavy flavor particles —> test the perturbative QCD (pQCD) calculations and provide input for the data driven nonperturbative QCD (npQCD) quantities.

- Test and constraint pQCD calculations and phenomenological models.
- Jet fragmentation and hadronization

Talk by Amanda Flores

Pb-Pb

- Study transport properties of QGP using heavy quark interactions with medium constituents.
- Hadronization in the presence of QGP.

System size dependence

This talk:

- Charm and beauty hadron measurements with the ALICE detector.
- What we can learn about pp, p-Pb, Pb-Pb from these measurements?

Charm meson measurements

|y| < 0.5

Charm hadron cross sections measurements in pp collisions

ALI-PUB-567836

ALI-PUB-567851

JHEP 12 (2023) 086

Deepa Thomas

High precision measurements of p_{T} differential production cross sections of different prompt D meson compared to pQCD calculations (FONLL, GM-VFNS, *k*_T-factorisation)

 p_{T}^{30} (GeV/c)

Study charm quark hadronisation to mesons and baryons

Ratios of p_T -differential cross sections of D⁺ and other mesons to D⁰ mesons.

- No significant dependence on the p_{T} of D mesons
- Common fragmentation functions of charm quark to mesons.

Ratios of p_T -differential cross sections of Λ_c baryons to D⁰ mesons.

• Compared with PYTHIA 8, Catania & QCM models (recombination), SHM+RQM (statistical hadronisation), POWLANG (recombination in QGP)

ALI-PUB-567876

• PYTHIA with CR, SHM+RQM, Catania models describe the data.

Charm baryon measurements

Charm-quark fragmentation fractions to different hadrons f(c -> h_c) at the LHC compared with LEP and HERA results.

- No significant energy dependence at the LHC.
- Enhancement of baryon -> overall reduction of relative D-meson abundance by a factor of 1.5 w.r.t e⁺e⁻ and ep collisions.

Total charm cross sections measurements in pp collisions

Charm cross section

Total $c\bar{c}$ cross-section is calculated from sum of production cross-sections of D⁰, D⁻, D⁺_s, J/ ψ , Λ_c , Ξ_c^0 , Ξ_c^+ hadrons in mid-rapidity.

Cross-section compared with FONLL and NNLO predictions and RHIC

• LHC results higher than RHIC due to baryon enhancement at mid-rapidity.

• LHC results compatible with the upper edge of FONLL and NNLO calculations.

PLB 829 (2022) 1237065

- Λ_c/D^0 vs multiplicity from both forward mid rapidity multiplicity estimators.
 - Multiplicity dependent -> hierarchy from low to high multiplicity intervals for both multiplicity estimators.
- Λ_c/D^0 compared with Λ/K_s^0 in similar multiplicity classes.

 - Similar shift in peaks towards higher p_T with increasing multiplicity.
- Common mechanism for light- and charm-baryon formation in hadronic collisions at LHC energies.

Charm Hadronisation

• Despite different production mechanism for light and heavy-favor quarks, both shows similar trend vs multiplicity.

Charm jet substructure measurements

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in jet} \left(\frac{p_{\mathrm{T,i}}}{p_{\mathrm{T,je}}} \right)$$

D⁰-tagged jets have lower angularities than semi-inclusive jets.

- HF jets more collimated than semi-inclusive jets
- PYTHIA describes angularities of charm-tagged jets better than semi-inclusive jets.

Charm jet properties

- Jet Angularities: substructure observable dependent on p_{T} and angular distribution of tracks within jets.
 - $\left(\frac{\Delta R_{\text{jet,i}}}{R}\right)^{\kappa} \left(\frac{\Delta R_{\text{jet,i}}}{R}\right)^{\kappa}$
- Jet *p*_T fraction carried by constituent i $\Delta R_{\text{jet,i}}$ distance of constituent i to the jet axis.

Infra red safe observable for k = 1, $\alpha > 0$ -> calculable in pQCD

8

Beauty hadron measurements in pp collisions

- p_T -differential cross sections of non-prompt D⁰ (b—>D⁰) and non-prompt Λ_c (b—> Λ_c) compared with FONLL and TAMU.
 - Theory predictions describe $b \rightarrow D^0$ in the full p_T range; Under predicts b—> Λ_c at low p_T .

Beauty cross section

- Most of non-prompt Λ_c originate from Λ_b^0 -baryons; Non-prompt Λ_c/D^0 used to study beauty hadronization.
 - Prompt and non-prompt Λ_c/D^0 vs p_T similar, except at low p_T .
 - TAMU prediction for non-prompt Λ_c/D^0 describes data for p_T > 4 GeV/c.

Total beauty cross sections measurements in pp collisions

Beauty cross section

• Measured cross-section extrapolated to full p_T range using an extrapolation factor from FONLL+PYTHIA8 prediction. -> assuming accurate description of p_{T} shape outside the measured range.

Total bb cross-section compatible with dielectron and $b \rightarrow J/\psi$ measurements and FONLL and NNLO calculations.

R_{pPb} of charm hadrons in p—Pb collisions

- $R_{\rm pPb}(D) \sim \text{unity.}$
- R_{pPb} of D mesons and Λ_c similar for $p_T < 4$ GeV/c; At higher p_T , R_{pPb} of $\Lambda_c > 1$ and greater than D mesons for $4 < p_T < 8$ GeV/c.
 - Possible suppression of Λ_c at low p_T and enhancement at mid- p_T w.r.t pp collisions.
- R_{pPb} of Λ_c compared with POWHEG+PYTHIA (CNM effects), POWLANG (QGP) and QCM (coalescence) models.
 - QCM model gives closest description of the data in full p_T range.

Charm hadron measurements in p-Pb

PRC 107 (2023) 064901 PRL 127 (2021) 202301 PRC 104 (2021) 054905 JHEP 12 (2019) 012

R_{pPb} of beauty hadrons in p-Pb collisions

- $R_{pPb}(b \rightarrow D^0) \sim unity.$
- $R_{pPb}(b \rightarrow D^0)$ consistent with $R_{pPb}(B)$ from CMS at high p_T .
- Not significantly affected by cold-nuclear effects.

- Most of non-prompt Λ_c originate from Λ_b^0 -baryons; Non-prompt Λ_c/D^0 used to study beauty hadronization.
 - Similar p_T trends for prompt and non-prompt Λ_c/D^0 .

v_2 of HF particles in high multiplicity p—Pb collisions.

- v_2 of inclusive muons (dominated by HF decays at high p_T) at forward rapidity compared with $c,b \rightarrow e$ at mid-rapidity.
 - Good agreement within uncertainties.

Azimuthal anisotropy in small systems

- Data compared with predictions from CGC and AMPT models for c,b $\rightarrow \mu$
 - AMPT: *v*₂ driven by the anisotropic parton escape mechanism
 - CGC: correlations between partons in the initial stages generate a v_2
- Both models describe data at high p_T

Charm quark interaction and energy loss in the QGP

- and v_2
- coalescence and/or fragmentation required to describe data.

Charm quark in Pb-Pb collisions

Understanding interaction and energy loss of heavy quarks in the QGP over time -> Simultaneous comparison of D-meson R_{AA}

• Interplay of CNM effects, realistic evolution of the QGP, heavy-quark interaction (radiative and/or collisional) and hadronization via

• Models provide fair description of data -> still challenging for models to describe R_{AA} and v_2 simultaneously in the full p_T range.

JHEP 01 (2022) 174

• Radiative energy loss important to describe intermediate and high p_{T} .

Understanding HQ interaction with QGP

Model calculations with different hadronization process

JHEP 01 (2022) 174

• Hadronization via coalescence important to describe low and intermediate p_{T} .

Understanding HQ interaction with QGP

D mesons

Model (PHSD, POWLANG, DAB-MOD) Model w/o coalescence

Models use spacial diffusion coefficient at T_c : 1.5-4.5 -> Thermalization time for charm quark: 3 - 9 fm/c

Heavy-flavor transport coefficients

Using data to constraint model parameters : compute χ^2/ndf between measurements and model predictions

Beauty quark interaction and energy loss in the QGP -> less diffusion and longer relaxation time than charm

 $\Delta E(g) > \Delta E(u, d, s) > \Delta E(c) > \Delta E(b) = > R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

Intermediate p_T (5-20 GeV/c): $R_{AA}(b) > R_{AA}(c)$ High p_T : $R_{AA}(b) \sim R_{AA}(c)$

ALI-PUB-534213

- Qualitatively described by models: smaller b quark energy loss + dead cone for gluon radiation
- Dip due to formation of D and B mesons via coalescence harding the D p_{T} spectra

Probe beauty quark interaction with QGP and hadronizarion via recombination with light quark at low-intermediate p_{T} , path length dependent energy loss at high p_{T} .

- $V_2(b \rightarrow D^0) > 0$; no strong p_T dependence;
- $v_2(b \rightarrow D^0) < v_2(D)$ with 3.6 σ significance.
- Theory models beauty quark transport in QGP -> give reasonable description of data.
 - All models, except TAMU (collisional only) include collisional interactions and radiative processes
 - Hadronisation via coalescence and fragmentation.

v₂ of Beauty Quarks

Probe hardronization via recombination in the strangeness rich environment using D⁺s

- $R_{AA}(D_{s}) > R_{AA}(D)$ for $p_T < 10$ GeV/c —> recombination with abundantly produced strange quarks in the QGP.
- $R_{AA}(D_{s}) \sim R_{AA}(D)$ for $p_T > 10$ GeV/ $c \rightarrow hadronization$ via fragmentation.
- Comparison with models:
 - at high p_{T} .
 - All models reproduce the p_T trend qualitatively.

Prompt D⁺_s **production**

• All models include enhancement of strangeness content of the QGP, hadronisation via recombination/coalescence at low p_T and fragmentation

• LGR model, which includes collisional and gluon-radiation processes for charm quark E.loss, best describes in the full p_T range.

Probe hardronization via recombination in the strangeness rich environment using D⁺s

PLB 827 (2022) 136986

V_2 of D+_s

- V₂(D+_s) vs V₂(D)
 - Different mass
 - Recombination with strange vs light quarks
 - Different freeze out times in the hadronic phase
- $v_2(D_{s}) \sim v_2(D)$ in the full p_T range within uncertainties.
- TAMU and PHSD models describes the data.
 - Charm quark coalescence with flowing strange quarks in the QGP.

$b \rightarrow D_s quark$

Probe hardronization via recombination using non-prompt D_{s}^{+} (b – > D_{s}^{+})

- $p_T < 6 \text{ GeV/c: } R_{AA}(b \rightarrow D_s) > R_{AA}(D_s) \rightarrow P_{AA}(D_s) = 0$
- Comparison with TAMU:
 - Energy loss via collisional processes, and hadronisation via recombination or via fragmentation.
 - Qualitatively describes the p_{T} trend but overestimates the R_{AA} .

• $p_T < 6 \text{ GeV/c: } R_{AA}(b - > D_s) > R_{AA}(b - > D_s) = 0$ (b) -> effect of recombination with strange quarks in a strangeness-rich environment

Study of baryon production with Λ_c

• Λ_c/D^0 ratio vs p_T in pp and 0–10% and 30–50% central Pb-Pb collisions

- Ratio increases from pp to central Pb—Pb collisions in the mid- p_T region.
- Similar behavior to p/π and Λ/K_s^0 ratios.
- In the range 4 < p_T < 8 GeV/c, hint of hierarchy $R_{AA}(D) < R_{AA}(D^+_s) < R_{AA}(\Lambda_c)$
 - Similar R_{AA} at high p_T where hadronization is via by fragmentation.

Baryon production vs multiplicity

PLB 839 (2023) 137796

- $p_{\rm T}$ integrated Λ_c/D ratio vs multiplicity from pp to Pb-Pb collisions.
 - No multiplicity dependence observed.
- Redistribution of p_{T} in the hadronic phase rather than an enhancement in the overall baryon yield
 - Significantly higher values than e⁺e⁻
- PYTHIA 8 expects multiplicity dependence.
- SHMc : flat trend below data (unobserved charm-baryon states not included in normalization)
- TAMU, Catania: similar values in pp and Pb-Pb collisions

The hard scattered partons propagates through the QGP -> jet shower itself evolves; jet constituents interact with the medium modifying the shower.

Jet-medium interaction

* pp collisions:

- Cross-section of charm and beauty quarks described by pQCD calculations.
- * Fragmentation function universality violated in pp collisions -> hadronization via recombination dominant at low p_{T} .
 - Common mechanism for light- and HQ-baryon formation.
- New observables to study heavy-quark jets and jet-substructures.

* p—Pb collisions:

- Heavy quark production not significantly affected by CNM effects.
- * Enhanced production of baryons in p—Pb collisions compared to pp in the intermediate p_T range.

✤ Pb−Pb collisions:

- Thermalization time for charm quark: 3-9 fm/c
- * Beauty quarks loose less energy than charm at low-intermediate p_{T} .
- * $v_2(b) > 0$ but lower than charm hadrons.
- consistent across systems from pp to Pb—Pb collisions -> but significantly higher values than e⁺e⁻.
- HF-jet medium interactions being studied using azimuthal correlation measurements.

Summary

✤ Several charm and beauty hadron measurements performed in pp, p—Pb and Pb—Pb collisions with the ALICE detector.

• While a p_T -differential enhancement of baryons dependent on the event multiplicity is observed, p_T -integrated baryon/meson ratios

ALICE upgraded for LHC Run 3 operations

- New Inner Tracker System
- New readout for most sub detectors
 - Allows triggerless data collection at higher interaction rates
 - Higher statistics and performance

Run 3 outlook

• More HF differential studies and new observables

• correlations, jets, jet substructure measurements

BACK UP

Fragmentation Function, D mesons

Study charm jets and fraction of jet momentum carried by D mesons

- provide insight into charm fragmentation

Parton shower and hadronization

- D⁰-jets measured for different R
 - described by PYTHIA and POWHEG MC simulations.
- $z^{ch} \sim 1$ for low p_T^{Jet} and R =0.2
 - D⁰ is the only constituent
- z^{ch} distribution much softer for larger R
 - more activity inside the jet.
- z^{ch} well described by PYTHIA and POWHEG at high p_T^{Jet}
 - small deviations observed at low p_T^{Jet} especially for POWHEG

Study charm jet fragmentation function to baryons

Fragmentation Function, charm baryon

Softer fragmentation of charm quarks to Λ_c compared to D⁰ mesons. -> charm-baryon production is favored in the presence of

higher particle multiplicity originating from jet fragmentation and underlying event

MC models:

- PYTHIA 8 Monash employs lund string fragmentation, tuned on e+e- data, predicts harder fragmentation than data
- PYTHIA 8 with CR mechanism gives a better description

Study HF jet radial profile and composition using HF-charged particle azimuthal distribution

HF-h $\Delta \phi$ distribution at LO:

- Near Side (NS): fragmentation of the tagged HF quark
- Away Side (AS): fragmentation of the other quark
- Transverse Region : Underlying event

Significant deviation between Λ_c -h and D-h low p_T

• probably as a consequence of softer fragmentation to Λ_c giving larger particle multiplicity inside the jet.

Jet shape and composition