

Office of Science

Transport coefficients of transient hydrodynamics for the HRG and thermal-mass quasiparticle models

Gabriel Soares Rocha (gabriel.soares.rocha@vanderbilt.edu) based on arXiv:2402.06996 with G. S. Denicol The 39th Winter Workshop on Nuclear Dynamics – Jackson Hole, WY, USA February 16th, 2024

Introduction

- With ultra-relativistic Heavy Ion Collisions, nuclear matter in extreme conditions can be studied; Heinz, Snellings Annu. Rev. Nucl. Part. Sci. 63 (2013) 123-151 Gale, Jeon, Schenke Int. J. of Mod. Phys. A, Vol. 28, 1340011 (2013)
- QCD at zero baryon chemical potential: crossover between hadron and Aoki et al. Nature, 443:675–678 (2006) 50 yrs of QCD paper EPJ C 83 (2023) 1125 Borsanyi et al, JHEP 11, 077 (2010) Leutwyler The strong interactions 2212.14791

Introduction

- Current understanding of the dynamics implemented in hybrid codes;
- Crucial element: relativistic hydrodynamic models (Solvers: MUSIC, Schenke Jeon, & Gale, PRC 82, 014903 (2010)
 CLVisc, VISHNU); Pand, Petersen & Wang PRC 97, 064918 (2018)
 Shen et al arXiv: 1409.8164 (2014)
- Kinetic theory as a guide; Romatschke & Romatschke Cambridge Monographs @Denicol Niemi Molnar Rischke PRD 85, 114047 (2012); Mathematical Physics 1712.05815 Denicol, Jeon, Gale PRC 90 024912 (2014)

Hydrodynamic variables and equations of motion

- Hydrodynamics: dynamics of coarse grained macroscopic variables (temperature/energy density, velocity);
- Basic equations of motion: local conservation of energy and momentum;

$$\partial_{\mu} T^{\mu
u} = 0$$
 continuity equations $\partial_t \left({}^{ ext{energy/}}_{ ext{momentum}}
ight) + ec{
abla} \cdot \left({
m fluxes}
ight) = 0$

Hydrodynamic variables and equations of motion

 $T^{\mu
u} = T^{\mu
u}_{
m eq} + T^{\mu
u}_{
m diss}$

• Dissipative fluids:

energy density

Equilibrium part/ Thermodynamic relations

$$\varepsilon_0 u^{\mu} u^{
u} - P_0(\varepsilon_0) \Delta^{\mu
u}$$

pressure

Non-equilibrium components

$$- \Pi \Delta^{\mu
u} + \pi^{\mu
u}$$

bulk viscous pressure

anisotropic pressure

$$\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$$

space-like projector

Credit: Chun Shen https://youtu.be/G-Fbon0YQak

Hydrodynamic variables and equations of motion

Dissipative fluids: $T^{\mu\nu} = T^{\mu\nu}_{
m eq} + T^{\mu\nu}_{
m diss}$ Equilibrium part/ Non-equilibrium components Thermodynamic relations $-\Pi\Delta^{\mu
u}+\pi^{\mu
u}$ $\varepsilon_0 u^{\mu} u^{\nu} - P_0(\varepsilon_0) \Delta^{\mu\nu}$ energy density bulk viscous pressure anisotropic pressure pressure $\partial_{\mu}T^{\mu\nu}=0$ Not enough for eq + diss (4 equations, 10 variables)

Constitutive relations/independent dynamic equations are needed. One way: Kinetic theory

Credit: Chun Shen

https://youtu.be/G-Fbon0YQak

Microscopic derivation from Kinetic Theory

de Groot et al, *Relativistic Kinetic Theory: Principles and Applications* (North-Holland, 1980) Denicol, Rischke Microscopic Foundations of Relativistic Fluid Dynamics. Springer, 2021

Non-equilibrium dynamics: Boltzmann equation

$$p^{\mu}\partial_{\mu}f_{\mathbf{p}}=C[f_{\mathbf{p}}]$$

spacetime dependence

Compatibility with conservation laws

collision term: interaction information

Adapted from: https://oph.cf2.guoracdn.net/main-gimg-ce13aa5d6f2394d9c2dccf6c912e79e4

 $T^{\mu
u} = \int dP \ p^{\mu}p^{
u}f_{p}, \quad \Longrightarrow \quad \partial_{\mu}T^{\mu
u} = 0$

• Boltzmann contains more dynamics than hydro \rightarrow truncation procedure

*GSR, Wagner, Denicol, Noronha, Rischke [arXiv: 2311.15063] Denicol Niemi Molnar Rischke PRD 85, 114047 (2012); Fotakis et al PRD 106, 036009 (2022) Wagner & Gavassino PRD 109, 016019 (2024) **7**

Microscopic derivation from Kinetic Theory

Denicol, Rischke Microscopic Foundations of Relativistic Fluid Dynamics. Springer, 2021
 Non-equilibrium dynamics: Boltzmann equation

 $p^{\mu}\partial_{\mu}f_{\mathbf{p}} = C[f_{\mathbf{p}}]$

spacetime dependence

collision term: interaction information

Struchtrup, Physics of Fluids 16, 3921 (2004) Fotakis et al PRD 106, 036009 (2022)

Wagner et a PRD 016013 (2022)

de Groot et al, Relativistic Kinetic Theory: Principles and Applications (North-Holland, 1980)

- Boltzmann contains more dynamics than hydro \rightarrow truncation procedure
- → Exact equations of motion for non-equilibrium fields *GSR, Wagner, Denicol, Noronha, Rischke [arXiv: 2311.15063] de Brito, Denicol [arXiV: 2401.10098]
- ightarrow "Small gradients, near equilibrium": relation between fields and $\prod, \pi^{\mu
 u}$

ightarrow Closed equations of motion for $\ \Pi,\pi^{\mu
u}$

Denicol & Rischke. *Microscopic Foundations of Relativistic Fluid Dynamics*. Springer, 2021 Wagner & Gavassino PRD 109, 016019 (2024)

Equations of motion and heavy-ion collisions

• At the end of this procedure, we have $T_{\Pi}D\Pi + \Pi = -\zeta\theta - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}$

 $\tau_{\pi} D \pi^{\langle \alpha \beta \rangle} + \pi^{\alpha \beta} = 2 \eta \sigma^{\alpha \beta} - \delta_{\pi \pi} \pi^{\alpha \beta} \theta - 2 \tau_{\pi} \omega_{\mu}^{\langle \alpha} \pi^{\beta \rangle \mu} - \tau_{\pi \pi} \sigma_{\mu}^{\langle \alpha} \pi^{\beta \rangle \mu} + \lambda_{\pi \Pi} \Pi \sigma^{\alpha \beta},$

Equations of motion and heavy-ion collisions

Navier-Stokes (first-order terms)

Second-order terms

 $D = u \cdot \partial$

$$\theta \equiv \nabla_{\mu} u^{\mu}$$

Expansion rate

$$\sigma^{\mu\nu}\equiv\nabla^{\langle\mu} \mathbf{u}^{\nu\rangle}$$

symmetric-traceless projection Shear tensor

Equations of motion and heavy-ion collisions

• At the end of this procedure, we have $\tau_{\Pi}D\Pi + \Pi = -\zeta\theta - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}$,

 $\tau_{\pi} D \pi^{\langle \alpha \beta \rangle} + \pi^{\alpha \beta} = 2 \eta \sigma^{\alpha \beta} - \delta_{\pi \pi} \pi^{\alpha \beta} \theta - 2 \tau_{\pi} \omega_{\mu}^{\langle \alpha} \pi^{\beta \rangle \mu} - \tau_{\pi \pi} \sigma_{\mu}^{\langle \alpha} \pi^{\beta \rangle \mu} + \lambda_{\pi \Pi} \Pi \sigma^{\alpha \beta},$

- Second order transport (MUSIC)
 - Single-particle content;
 - High temperature limit (m/T <<1);
 - Approximate collision term;

$$C[f_{\mathbf{p}}] \simeq -\frac{E_{\mathbf{p}}}{\tau_{R}}(f_{\mathbf{p}}-f_{0\mathbf{p}})$$

https://webhome.phy.duke.edu/~jp401/music_manual/hydro.html#viscous-hydrodynamics Denicol, Jeon, Gale PRC 90 024912 (2014)

https://github.com/MUSIC-fluid/MUSIC

Current implementation (MUSIC)

 $\tau_{\Pi} D\Pi + \Pi = -\zeta \theta - \overline{\delta_{\Pi\Pi}} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu},$

$$\tau_{\pi} D \pi^{\langle \alpha \beta \rangle} + \pi^{\alpha \beta} = 2 \eta \sigma^{\alpha \beta} - \delta_{\pi \pi} \pi^{\alpha \beta} \theta - 2 \tau_{\pi} \omega_{\mu}^{\langle \alpha} \pi^{\beta \rangle \mu} - \tau_{\pi \pi} \sigma_{\mu}^{\langle \alpha} \pi^{\beta \rangle \mu} + \lambda_{\pi \Pi} \Pi \sigma^{\alpha \beta},$$

High temperature: second-order ↔ first order and speed of sound

Denicol, Jeon, Gale PRC 90 024912 (2014)

$$\begin{aligned} \tau_{\Pi} &= \frac{\zeta}{15(\varepsilon_{0} + P_{0})(1/3 - c_{s}^{2})^{2}} \\ \tau_{\Pi} &= \frac{2}{3}\tau_{\Pi} \\ \tau_{\pi} &= \frac{5\eta}{\varepsilon_{0} + P_{0}} \end{aligned} \qquad \delta_{\pi\pi} = \frac{4}{3}\tau_{\pi} \quad \tau_{\pi\pi} = \frac{10}{7}\tau_{\pi} \quad \lambda_{\pi\Pi} = \frac{6}{5}\tau_{\pi} \end{aligned}$$

 Goal: update Denicol, Jeon, Gale PRC 90 024912 (2014) with toy models containing more realistic degrees of freedom

The Hadron Resonance Gas and the Quasiparticle Model

Using kinetic theory toy models as guides, how do transport coefficients behave?

The hadron-resonance gas

• Hadron-resonance gas toy model

$$p^{\mu}\partial_{\mu}f_{\mathbf{p},i} = C_i[f_{\mathbf{p}}] \simeq -\frac{E_{\mathbf{p},i}}{\tau_R}(f_{\mathbf{p},i}-f_{0\mathbf{p},i}),$$

Celaxation time approximation
J. L. Anderson and H. Witting, Physica 74, 466 (1974)

$$i = \{\pi^{0}, \pi^{\pm}, K^{0}, K^{\pm}, \eta, f_{0}(500), \cdots \}$$
$$f_{0\mathbf{p},i} = g_{i}e^{-\beta u_{\mu}p_{i}^{\mu}}$$

$$T^{\mu
u} = \sum_{i=1}^{N_{\mathrm{spec}}} \int dP_i p_i^{\mu} p_i^{
u} f_{\mathbf{p},i}.$$

Landau prescription:

$$T^{\mu}_{\nu}u^{\nu}=\varepsilon_{0}u^{\mu}$$

Procedure:

Boltzmann \rightarrow Hydro truncation + Relaxation time approximation \rightarrow Hydro equations of motion

• Quasiparticle kinetic theory toy model

P. Romatschke *PRD*, *85*(6), 065012 (2012) . Jeon & Yaffe PRD, *53*(10), 5799 (1996); Calzetta, E., & Hu, B. L.. *PRD 37*(10), 2878 (1988). Jeon PRD 52 3591-3642 (1995) Alqahtani et al PRC 92, 054910 (2015)

$$p^{\mu}\partial_{\mu}f_{\mathbf{p}} + rac{1}{2}\partial_{\mu}M^{2}(T)\partial_{(p)}^{\mu}f_{\mathbf{p}} = C[f_{\mathbf{p}}]$$

 $s_0(T) = \frac{gM(T)^3}{2\pi^2} K_3(M(T)/T).$

The quasiparticles are effective degrees of freedom (neither quarks nor gluons)

Known from lattice data

Borsanyi et al (Wuppertal-Budapest), JHEP 11, 077 (2010);

• Quasiparticle kinetic theory toy model

P. Romatschke *PRD*, *85*(6), 065012 (2012) . Jeon Calzetta, E., & Hu, B. L.. *PRD* 37(10), 2878 (1988). ^{Jeon} Alqahtani et al PRC 92, 054910 (2015)

Jeon & Yaffe PRD, *53*(10), 5799 (1996); Jeon PRD 52 3591-3642 (1995)

$$p^{\mu}\partial_{\mu}f_{\mathbf{p}} + \frac{1}{2}\partial_{\mu}M^{2}(T)\partial_{(p)}^{\mu}f_{\mathbf{p}} = C[f_{\mathbf{p}}]$$

• Traditional $T^{\mu\nu}$ gets modified:

$$T^{\mu
u} \equiv \int dP p^{\mu} p^{
u} f_{\mathbf{p}} + g^{\mu
u} B q^{\mu
u}$$

Generic non-equilibrium relation

$$\partial_{\mu}B=-rac{1}{2}\partial_{\mu}M^{2}\int dP f_{\mathbf{p}}$$

• Judicious definition of temperature: B = B(T) an equilibrium variable GSR, Ferreira, Denicol, Noronha, PRD 106, 036022 (2022)

$$\int dP f_{\mathbf{p}} \equiv \int dP f_{0\mathbf{p}}$$

$$T^{\mu}_{
u}u^{
u}\equivarepsilon u^{\mu}$$

energy density with dissipative corrections

• Alternative definition of temperature: must use modified version of RTA

GSR, Denicol, Noronha PRL 127, 042301 (2021) GSR, Ferreira, Denicol, Noronha, PRD 106, 036022 (2022)

$$C[f_{p}] \propto -1 + |p^{\mu}\rangle \langle p^{\mu}|,$$

$$Counter terms to ensure local conservation laws$$

Procedure:

Boltzmann \rightarrow Hydro truncation + Relaxation time approximation* \rightarrow Transient equations \rightarrow change to Landau matching

 $T^{\mu
u}_Q = T^{\mu
u}_L$

 $u^{\mu}_{Q}=u^{\mu}_{L},$

 $\begin{aligned} \varepsilon_0(T_Q) + \delta \varepsilon_Q &= \varepsilon_0(T_L) \\ P_0(T_Q) + \Pi_Q &= P_0(T_L) + \Pi_L, \\ \pi_Q^{\mu\nu} &= \pi_L^{\mu\nu}, \end{aligned}$

Relaxation times, high-temperature limit

Relaxation times, high-temperature limit

Relaxation times – smaller temperatures

GSR & Denicol [arXiv:2402.06996]

Bulk second-order transport coefficients

 $\tau_{\Pi} D\Pi + \Pi = -\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu},$

Shear second-order transport coefficients

$$\tau_{\pi} D \pi^{\langle \alpha \beta \rangle} + \pi^{\alpha \beta} = 2\eta \sigma^{\alpha \beta} - \delta_{\pi \pi} \pi^{\alpha \beta} \theta - 2\tau_{\pi} \omega_{\mu}^{\langle \alpha} \pi^{\beta \rangle \mu} - \tau_{\pi \pi} \sigma_{\mu}^{\langle \alpha} \pi^{\beta \rangle \mu} + \lambda_{\pi \Pi} \Pi \sigma^{\alpha \beta},$$

$$\int_{I_{HR}}^{\delta_{m}} \int_{I_{HR}}^{I_{HR}} \int_{I_{HR}}^{I_{H$$

Linear causality

• Constraint on relaxation times $1 - c_s^2 - \frac{1}{\varepsilon_0 + P_0} \left(\frac{4}{3} \frac{\eta}{\tau_\pi} + \frac{\zeta}{\tau_\Pi} \right) \ge 0$

Conclusions

- We have provided updated expressions for various transient hydro transport coefficients using the HRG and QPM;
- We find that:
 - the normalized bulk viscosity has different expressions in the high temperature limit for both models;
 - transport coefficients related to bulk are usually sensitive to temperature;
- Future: finite chemical potential; non-linear causality; momentum-dependent relaxation time.

THAT'S ALL FOR TODAY!

BACKUP SLIDES

Transient hydro and Boltzmann moments

Denicol and Rischke. *Microscopic Foundations of Relativistic Fluid Dynamics*. Springer, 2021 Denicol Niemi Molnar Rischke PRD 85, 114047 (2012);

Boltzmann eqn. dynamics → **Moments dynamics**

In pa

$$\rho_{r}^{\mu_{1}\cdots\mu_{\ell}} = \int dP E_{p}^{r} p^{\langle \mu_{1}} \cdots p^{\mu_{\ell} \rangle} \delta f_{p, \rightarrow} \stackrel{\text{deviation from local}}{\underset{\text{equilibrium}}{\text{equilibrium}}} \delta f_{p} \equiv f_{p} - f_{0p}$$

rticular, $\Pi = \frac{1}{3} (\rho_{2} - m^{2} \rho_{0}) \quad \pi^{\mu\nu} = \rho_{0}^{\mu\nu}$

Transient hydro and Boltzmann moments

Denicol and Rischke. *Microscopic Foundations of Relativistic Fluid Dynamics*. Springer, 2021 Denicol Niemi Molnar Rischke PRD 85, 114047 (2012);

Boltzmann eqn. dynamics \rightarrow Moments dynamics

de Brito, Denicol 2401.10098 Full EoMs

$$\rho_r^{\mu_1\cdots\mu_\ell} = \int dP E_p^r p^{\langle \mu_1}\cdots p^{\mu_\ell\rangle} \delta f_p,$$

For example:

Navier-Stokes

Coupling terms

Relaxation times

Hydrodynamics: reduction of d.o.f's

$$\mu_1\cdots\mu_\ell \to \{\Pi,\pi^{\mu\nu}\}$$

(Landau matching

Transient hydro and Boltzmann moments

Denicol and Rischke. *Microscopic Foundations of Relativistic Fluid Dynamics*. Springer, 2021 Denicol Niemi Molnar Rischke PRD 85, 114047 (2012);

Boltzmann eqn. dynamics → **Moments dynamics**

 $ho_{\mathbf{r}}$

$$\rho_r^{\mu\nu} = \frac{\eta_r}{\eta} \pi^{\mu\nu} \equiv \mathcal{C}_r \pi^{\mu\nu} + \mathcal{O}(2).$$

Struchtrup, Physics of Fluids 16, 3921 (2004) Fotakis et al PRD 106, 036009 (2022) Wagner et a PRD 016013 (2022)

Hydrodynamics: reduction of d.o.f's

$$\Pi^{\dots\mu_{\ell}} \to \{\Pi, \pi^{\mu\nu}\}$$

(Landau matching)

Temperature matching

• We impose that $T_Q^{\mu\nu} = T_L^{\mu\nu}$, and since $u_Q^\mu = u_L^\mu$, $\varepsilon_0(T_Q) + \delta \varepsilon_Q = \varepsilon_0(T_L)$ $P_0(T_Q) + \Pi_Q = P_0(T_L) + \Pi_L,$ $\pi^{\mu\nu}_{Q} = \pi^{\mu\nu}_{I},$ $T_Q = T_L - \frac{3\Pi_L}{(\partial \varepsilon_0 / \partial T_L)(1 - 3c_s^2)} + \mathcal{O}(2),$ $\Pi_Q = \frac{\Pi_L}{1 - 3c_s^2} - \frac{9}{2} \frac{\partial c_s^2}{\partial \varepsilon_0} \frac{\Pi_L^2}{(1 - 3c_s^2)^3} + \mathcal{O}(3).$

The relaxation time approximation

- All hydro models require inversion of the lin. collision matrix (highly non-trivial);
- Relaxation time approximation (RTA)

J. L. Anderson and H. Witting, Physica 74, 466 (1974)

$$f_{0\mathbf{p}}\hat{L}\phi_{\mathbf{p}}\simeq-rac{u_{\mu}p^{\mu}}{ au_{R}}(f_{\mathbf{p}}-f_{0\mathbf{p}})$$

widely used in HIC phenomenology: e.g. particlization

□limited scope (constant τ_R and Landau matching conditions)

Credit: http://jetscape.org/sims/

• Alternative matching obliges the use of a modified RTA GSR, Denicol, Noronha PRL 127, 042301 (2021) GSR, Ferreira, Denicol, Noronha, PRD 106, 036022 (2022)

$$C[f_{p}] \propto -1 + |p^{\mu}\rangle\langle p^{\mu}|,$$
Traditional RTA

Projector in the subspace of conserved quantities in an orthogonal basis

$$C_{Q}[f_{\mathbf{p}}] \simeq -\frac{E_{\mathbf{p}}}{\tau_{R}} f_{0\mathbf{p}} \left[\phi_{\mathbf{p}} - \frac{\langle \phi_{\mathbf{p}} E_{\mathbf{p}}^{2} \rangle_{0}}{I_{3,0}} E_{\mathbf{p}} + \frac{\langle \phi_{\mathbf{p}} E_{\mathbf{p}} p^{\langle \mu \rangle} \rangle_{0}}{I_{3,1}} p_{\langle \mu \rangle} \right]$$
$$I_{3,0} = \langle E_{\mathbf{p}}^{3} \rangle_{0}$$
$$I_{3,0} = \langle F_{\mathbf{p}}^{3} \rangle_{0}$$
$$I_{3,1} = (1/3) \langle E_{\mathbf{p}} \mathbf{p}^{2} \rangle_{0}$$

Alternative matching obliges the use of a modified RTA GSR, Denicol, Noronha PRL 127, 042301 (2021) GSR, Ferreira, Denicol, Noronha, PRD 106, 036022 (2022)

$$C[f_{p}] \propto -1 + |p^{\mu}\rangle\langle p^{\mu}|,$$

ace of n an orthogonal basis

recovery of fundamental properties of the collision term $\hat{L}1 = 0$, $\hat{L}p^{\mu} = 0$.

Comparison with pQCD

pQCD data - Ghiglieri, Moore, Teaney Phys. Rev. Lett. 121, 052302 (2018)

Debye mass - Laine, Schicho and Schroeder PRD 101 023532 Lattice data - Bazavov et al (HotQCD) PRD 90 094503 (2014), arXiv 1407.6387 [hep-lat];

New results – high-temperature limit, other coefficients

$rac{\delta_{\Pi\Pi}}{ au_{\Pi}}$	$rac{\lambda_{\Pi\pi}}{ au_{\Pi}(1/3-c_s^2)}$	$rac{\delta_{\pi\pi}}{ au_\pi}$	$rac{ au_{\pi\pi}}{ au_{\pi}}$	$rac{\lambda_{\pi\Pi}}{ au_{\pi}}$
2 3	8 5	4 3	$\frac{10}{7}$	6 5
2 3	2	4 3	$\frac{10}{7}$	6 5
	2 3	$\frac{4}{3}$	$\frac{10}{7}$	$-\frac{3456}{5}\left(\frac{1}{3}-c_s^2\right)$

34

-1