PH^{*}ENIX

Spin physics overview

WWND 2024 February 16

Ralf Seidl (RIKEN)

Helicity PDFs, longitudinal spin

2/16/2024, WWND

Naïve Quark Model picture: 3 valence quarks make up the spin of the nucleon:

The Spin sum rule

$$\longrightarrow = \longrightarrow + \longrightarrow + \longleftarrow$$

 $=\frac{1}{2}\frac{\Delta\Sigma+\Delta G+L}{\begin{array}{c}\text{Quark}\\\text{spin}\end{array}}$ Jaffe, Manohar Gluon Orbital angular spin momentum

 $\Delta \Sigma = \int dx \left[(\Delta u(x) + \Delta \overline{u}(x)) + (\Delta d(x) + \Delta \overline{d}(x)) + (\Delta s(x) + \Delta \overline{s}(x)) \right]$

- Spin Crisis (1980s): Quark spin contributes only little
- $\Delta\Sigma$ and ΔG can be accessed in longitudinally polarized (SI)DIS and pp collisions (currently for x>0.01)
- Where is the rest of the spin? Gluons? Lower momentum fractions? Orbital angular momentum?

Hard processes at RHIC

- Most processes are dominated by gluon hard interactions at RHIC energies
- Acccess to Gluon related spin and transverse spin effects!
- Relative contributions different for different final states (flavor sensitivity)

RIKEN

Gluon spin: To higher energies and lower x

- Nonzero gluon polarization established with RHIC Vs = 200 GeV data
- RHIC 510 GeV data (>2011) confirmed it in workhorse (jet, pion) measurements
- Extend access to lower x by higher energy (now~ 10⁻²)

PRD 93 (2016) 011501

 $\Delta g(x)$

2/16/2024, WWND

First direct photon xsec and A_{LL} at 510 GeV

• Clear preference for positive gluon polarization in measured range

DOE Science Highlight

RIKEN

Status of global Helicity fits

- First preliminary NNLO global fit of all recent DIS/SIDIS and RHIC data by BDSSV group
- Good understanding of helicities down to x of 0.01 with sizeable gluon spin contribution
- Lower x reach will be the goal of the EIC

Transverse Single spin asymmetries (TSSAs)

• Left-Right asymmetries :

 $A_N = \frac{1}{P} \frac{N^L - N^R}{N^L + N^R}$

- Relative to the polarized proton spin direction more particles get produced to the left than to the right wrt. spin direction
- The cross section is spin (and azimuthal angle) dependent
- Initially expected to be zero in perturbative QCD (helicity-flip of nearly massless quarks) - G. L.
 Kane, J. Pumplin, and W. Repko *PRL*41, 1689 (1978):

 $A_N \propto \frac{m_q \alpha_S}{P_T} \approx 0.001$

Transverse single spin asymmetries (TSSA)

- Large left-right asymmetries A_N seen in polarized p+p collisions from low energies up to RHIC energies at forward rapidities
- Both initial state and final state effects can contribute in forward pion asymmetries
- Both effects described via higher-twist correlations, but those are related to TMD moments (especially quark, gluon Sivers, Collins FF)

TSSAs at RHIC→Quark-gluon dynamics!

- Sivers and Collins effects rely on an explicitly transverse momentum dependent (TMD) framework where two scales are observed: high scale (typically Q²) and intermediate scale (transverse momentum $P_T << Q^2$)
- In inclusive pp measurements usually only one, hard scale accessible (transverse momentum P_T)
- → requires higher Twist, collinear framework, contributions are multi-parton correlators (both in initial state and final state)
- Both frameworks found to be related via moments over intrinsic transverse momenta

q-g correlation (↔ quark Sivers)

 $p^{\uparrow}(p)$

 $(x_2 - x_1)p^+$

 $p^{\dagger}(p)$

g-g correlation (trigluon ↔ gluon Sivers)

 P_h, S_h

q-g FF correlation (↔ Collins)

 P_h/z

2/16/2024, WWND

Single spin asymmetry contributions in p+p

unpol proton PDF* FS particle FF* pol proton PDF*

a,b,c $\sum \delta q_{a/A}(x,s) \otimes \phi_{b/B}^{(3)}(x_1',x_2') \otimes D_{c \to C}(z)$ a,b,c

 $\sum \delta q_{a/A}(x,s) \otimes \phi_{b/B}(x') \otimes D^{(3)}_{c \to C}(z_1,z_2)$ a,b,c

> a,b/c initial/final parton flavors A,B/C initial/final hadron/particle types

Efremov, Teryaev Phys.Lett.B 348 (1995) 577 Qiu, Sterman Phys. Rev. D 59 (1999) 014004 Kanazawa, Koike Phys.Lett.B 478 (2000) 121-126 Metz, Pitonyak Phys.Lett.B723 (2013) 365-370

 $\sum \phi_{a/A}^{(3)}(x_1, x_2, s) \otimes \phi_{b/B}(x') \otimes D_{c \to C}(z)$ • Generally three pieces to p+p single transverse spin asymmetries:

- Twist three correlation functions (quarks or gluons) in polarized proton \leftrightarrow Sivers function
- Twist three correlation function in unpolarized proton (with transversity) \leftrightarrow Boer Mulders function
- Twist three correlation in fragmentation ↔ Collins function

Different final states single out different contributions (via hard processes)

2/16/2024, WWND

+

 A_N

Updated precision for central A_Ns

PRD 103 (2021) 052009

- Substantial updates for π^0 and η single spin asymmetries at central rapidity
- Possible effects pushed below the 1% level
- sensitive to quark-gluon and trigluon correlation functions in initial and final state effects

Charged pion A_Ns at mid-rapidity

- Charged pion A_N consistent with zero and π^0 results for each charge
- But indication of differences between charges seen → could be an indication of flavor dependent effect in initial (up vs down quarks) or final state (u→π⁺ vs u→π⁻)

PRD 105 (2022) 032003

Forward charged hadron A_ns

- Also more detailed forward (1.4<η<2.4) charged hadrons
- For proton collisions sizeable positive asymmetries for h⁺, slightly negative for h⁻
- h⁻ results expected due to mix of pions (negative) and kaons (positive)
- Negative kaons are enhanced due to the absorbing material

PRD 108 (2023) 072016

14

RIKE

Direct photon measurements: the golden channel

- As photon interacts only electromagnetically there are no final state effects → only probe initial state effects
- Hard process contributions strongly favor quark-gluon interaction (very little quark-quark contributions)
- Excellent probe of the tri-gluon correlator
- But EM interaction costs you $\frac{1}{\sqrt{\alpha_{EM}}}$ \rightarrow statistically difficult

 Also not all photons produced directly → need to understand and measure Background and its asymmetry

First direct photon A_Ns

- First direct photon A_N extracted at RHIC
- Mostly sensitive to initial state effects (no fragmentation) → quark-gluon and gluon-gluon correlation functions
- Power to constrain gluon-gluon correlation function well, since quark impact expected to be small

RIKEN Press release: <u>https://www.riken.jp/press/</u> 2021/20211015_1/index.html

BNL Press release:

https://www.bnl.gov/newsroom/news.php?a=119077

PRL 127 (2021) 162001

Heavy Flavor electron A_Ns PRD 107 (2023) 052012.

Ralf Seidl: PHENIX spin

- Almost only gluon related, no final state effects → tri-gluon correlation
- Potential to constrain parameter ranges in D meson A_N theory calculations: <u>PRD78</u>, 114013 (Z.B. Kang, J.W. Qiu, W. Vogelsang, F. Yuan)
- Comparison or charges provides further sensitivity

RIKE

Where to go from here? Global fits on transverse quark-gluon structure

Cammarota et al, PRD 102 (2020) 054002

RHIC, SIDIS, DY included

- Recent central rapidity PHENIX results (π , η ,Heavy flavor electons, direct photons) NOT yet included
- Impact on gluon Sivers function (tri-gluon correlator) expected

A dependence of A_Ns

- Asymmetries consistent with A^{1/3} dependence as (initially) predicted by some CGC related nuclear effects (Hatta`17)
- No A dependence is ruled out
- Also consistent with suppression with increasing number of binary collisions
- However, probed x and scale too large for expected CGC effects! (S.Benic and Y.Hatta, PRD99, 094012 - Twist-3 fragmentation + gluon saturation)

19

RIKE

2/16/2024, WWND

Also central pA asymmetries

- Recently also neutral pion and eta results obtained from p+Al and p+Au collisions at Vs 200 GeV
- A dependence of central rapidities consistent with zero
- Not surprising since p+p asymmetries have previously been found to be zero within less than a percent

PRD 107 (2023) 112004

neutron asymmetries from p+p to p+A

- Unexpectedly large A dependence in neutron asymmetries, sign change
- OPE model does not predict such a change in asymmetries
- Coincidence with charged particle activity in forward and backward region (BBC) enhances hard interactions → asymmetries stay negative
- Veto enhances UPC contribution → p+Al asymmetries already positive

 \Rightarrow study also the actual x_F and P_T dependence for actual interplay

Inclusive neutron asymmetries in p+p

PRD 105 (2022) 032004

Dashed areas: best parameterizations of x_F integrated asymmetries using Pol3, Power law or Exponential

- ₹0.2 **ZDC** inclusive BBC Tag 2015: p+p \rightarrow n + X BBC Veto PHENIX • $A_N 0.01 < P_T/[GeV/c] < 0.06$ $\sqrt{s} = 200 \text{ GeV}, \eta > 6.8$ b 0.15 A_N 0.06 < P_T/[GeV/c] < 0.11 3.4 % Polarization scale • A_N 0.11 < P_T/[GeV/c] < 0.16</p> uncertainty not shown 0.1 A_N 0.16 < P_T/[GeV/c] < 0.21 0.05 -0.05 _∩ 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.9 0.5 0.6 0.8
 - Magnitude increasing with P_T except for low x_F
 - Only weak x_F dependence in hadronic events, slightly larger in BBC vetoed events
 - Comparable to (OPE dominated) model curves

2/16/2024, WWND

Very forward neutron asymmetries in p+Au

PRD 105 (2022) 032004

Model calculations: <u>Mitsuka PRC95 (2017) 044908</u> + <u>Kopeliovich et al: PRD 84 (2011) 114012</u> (OPE) Large, increasing asymmetries seen with likely a hint of decrease at high P_T for lower x_F

 Roughly similar behavior in model seen but details shifted – possibly due to inclusion of single pion resonances only

2/16/2024, WWND

Summary

- Longitudinal spin measurements from PHENIX for various final states
- "Golden Channel" direct photon A_{LL} to clearly provide sign of gluon spin contribution
- Improved measurements for transverse spin asymmetries in p+p collisions will provide more information about quark-gluon and trigluon correlations
- nontrivial A dependence in inclusive hadron asymmetries
- Far forward neutron asymmetries with A dependence through UPC contribution, now also x_F and p_T dependence
- Also, new sPHENIX results expected from 2024 run

2/16/2024, WWND