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High Energy Physics & Computing frontier

Data is obtained via InspireHEP 1

@ The number of papers (in high energy physics) that has a keyword “Machine :
Learning”, “Deep Learning”, “Artificial Intelligence” or “Neural Networks” in their title.
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A The number of papers that has a keyword “Quantum Computer”, "Quantum
Computing”,“Quantum Annealing” or “Quantum Machine Learning” in their title.
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Communication would be
VERY DIFFICULT

V|

But it is worth it, so let's try




"ongoing" project

* The results here are semi-final.
- we are checking about more "goodness" of our method

e Comments, contributions are welcome !



Theory-Compare-Data
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e With 6ur elaborated theoretical model,
1) Get expectations from MC simulations
2) Get data from experiments (e.g. the LHC)

3) Compare our expectation to data with sophisticated computer
algorithms (including Machine Learning)



Importance of Theory

 \We need HUGE "training data" to feed the "data hungry"
Neural Net.

 One can dream of "data-driven" machine learning.

- We cannot guarantee the estimation out of Controlled sampiles.
: NO magic can do "Exploration".



Monte Carlo Simulation
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o With Zipheory: We simulate a

collision process with various
Monte Carlo tools.

- PDF : parton contributions
(e.qg. : quark/gluons in protons)




Monte Carlo Simulation

1 1
gtheory = ZGﬁvGa’ﬂy o ZW;ZVWZ,PW T4 <l}/MD,u — m) q

o With Zpeory, We simulate a

collision process with various
Monte Carlo tools.

- Hard process
(e.9: gg — 1t = bWTbW™ = bbjjjj)




Monte Carlo Simulation
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Monte Carlo Simulation
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o With Zpeory, We simulate a

collision process with various
Monte Carlo tools.

- Hadronization (approximation)
(color dress-up : meson, hadron)
and corresponding decays



e With &

Monte Carlo Simulation

theory: W€ SiMulate a

collision process with various
Monte Carlo tools.

PDF : parton contributions «

Hard process ~—— -
Parton Showering

Hadronization
son. hadron An approximation

(color dress-up : me

and corresponding decays

PDF library (LHAPDF)

Matrix Element (e.g. Madgraph)

(e.g. Lund string: pythia)
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Current victory?!
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e Comparison between the data and expectations from MC.
- Jet (correction of hadrons in a small cone) multiplicity

Distributions are normalized by the (inclusive) dijet cross section




Into the LOW statistics

* As we get a statistics,
we are approaching a high energy region

= Huge multiplicity.



diagram 1 QCD=2, QED=0 diagram 2 QCD=2, QED=0

diagram 3 QCD=2, QED=0 diagram 4 QCD=2, QED=0
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Multiplicity !

* The production of multi-particles will have HUGE number of
"feynman" diagrams.

Number
of LO 559,405

diagrams

10,525,900

Number of LO diagrams -
10° ] .
' We should have an alternative way
o (what | expect here)

1001

?- This is very hard problem...

, | Y - Number of gluons
2 3 4 5 6 7 8




THEORY | FEATURE

The roots and fruits of string theory

29 October 2018

In the summer of 1968, while a visitor in CERN’s theory division, Gabriele
Veneziano wrote a paper titled “Construction of a crossing-symmetric, Regge
behaved amplitude for linearly-rising trajectories”. He was trying to explain
the strong interaction, but his paper wound up marking the beginning of

string theory.

What led you to the 1968 paper for which you are most famous?
In the mid-1960s we theorists were stuck in trying to understand the strong interaction.

We had an example of a relativistic quantum theory that worked: QED, the theory of
interacting electrons and photons, but it looked hopeless to copy that framework for
the strong interactions. One reason was the strength of the strong coupling compared to
the electromagnetic one. But even more disturbing was that there were so many (and
ever growing in number) different species of hadrons that we felt at a loss with field
theory — how could we cope with so many different states in a QED-like framework? We

now know how to do it and the solution is called quantum chromodynamics (QCD).



Our target for * is
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e For an observable O(py, -+, p,) , we need to calculate the differential
distribution of

n
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(precise numerical) Integration
In high dimensional phase space



Monte Carlo with Importance sampling

e With random N samples according to a uniform Probability Distribution Function pdf(x)
within an integral domain [a, D]
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Importance sampling

e |f we sample PDF « f(x), we can reduce a variance
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Bad PDF Uniform PDF Good PDF

e When we don't know a function f(x) at all, how can we estimate
a good PDF ?



Traditional method...

e Stratified Sampling: Divide domain into sub-domains.
For example, if we divide the domain into NV divisions,

1 1

o X — instead of 0 x ———
N VN

VEGAS

1.0

0.8
e "Classic" VEGAS: Adaptive importance sampling,

0.6 LHIHH ! since 1977

Recently, there is an update, VEGAS+
J.Comput.Phys. 439 (2021) 110386

0.2 1




Neural Net as a good estimator

* Due to the universal approximation theorem, NN serves as a
bonafide function approximator.

* Design a process where the accuracy of NN becomes
proportional to our interests in sampled regions:

- spend, relatively, more time sampling regions of iterests

- enough time for low importance region



Importance sampling with
Machine Learning

In fact, we already solved a similar problem in our previous study
arXiv:2207.09959,

"Exploration of Parameter Spaces Assisted by Machine Learning'
(Computational Physics Communication, v293, 2023)

Let me explain what we have done....

The following example is the case when the function
f(X) is "computationally expensive".

: Let ML to approximate f(X)



https://arxiv.org/abs/2207.09959

Classifier type ML

. . . Random numbers (Ko)
th
ML classifier (O trammg) <— HEP ] Y(Ko)

................................... ¢

ML classifier (prediction) [«— Random numbers (L)

o
§i Select a batch of points
§ Y =1[0,1——> K according to Y
= + random points
%
) v

[ ML classifier (training) K<----------

A Y

— Ky _o HEP package SMOTE
A

mmmmm-—-—--—----- - Accumulate points
previous steps

- - - - -

* \We use a classifier type to predict the class of a points
e.g: Y = 0 (reject) or 1 (accept)



Classifier type ML

. . Random numbers (Kj)
th
ML classifier (0*" training) [<— HEP package Y (Ko)

................................. 7 e SMOTE (arXiv:1106.1813)
ML classifier (prediction) [«— Random numbers (L)
A
g ) ! Select a batch of points * Synthetic Minority Oversampling Technique
S =[0,1] —> K according to Y . " "
2 + random points is used to "gather" more samples
3 v .
i ML classifier (training) K- - N Oversampling
A v :
: Copies of the
—— Ky _o SM;)TE minority class =
- Ky Al """" ' v g

il Accumulate points
previous steps

Original dataset

using k-nearest neighbor algorithm, "make" samples
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Deviation
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MCMC

e Points are &£ > 0.9 conditions.

o With x; € [—10x,10x], there are 13 cell.

e The "deviation" is the ratio of

a population in each "cell" over an average

population
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Utilizing our ML algorithm
for an importance sampling
In an integration



Two integration methods

from MadNIS (Theo Heimel et.al. arXiv:2311.01548)
~--- Target 400 £55== ffffffffffffffffffffffffffff?
—— VEGAS I
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T 2004

o 100 A
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X
 Riemann Integration. * Lebesgue Integration

 Lebesgue integral is more efficient(?) and broad(!)

1 if P
- A classical example:  f(x) = 0 :fi 2 0



Our approach: Lebesque

300+~~~

f(x)

2001 ___ |

100 -

400 -fffffﬁ

05 10 15 20 25 3.0 35 40 45

Vq)j : Volume of @, .

 Divide the space of integrand (classes)

;= (F|] < f&) < ljyy)

The integral : I, [j”(f)] = [ dx f(X) = i J dx f(X) = i V(I)j<f>q)j
@

 We recast the problem of integration — classification problem



Monte Carlo with ML

e here, if we can "correctly" decide X E CI)]- , we can calculate

N g
Vo, = — Vi (Ne, = ~— Y. f(x) with large sample Nyoy,
Ntotal N] i—1

o Itis crucial to estimate Vq)j. With previous an iterative ML algorithm,

1. Train NN with a sample of points and function value.

{z}h
2. Get predictions from the NN for a larger sample of new points.

NN _’4 {z}2
\ 8 3. Use function to correct wrong predictions.

i }n 4. Go back to training until NN is accurate enough.




Deciding division of f(x)

« We have a freedom to decide divisions on f(X)

- We can have divisions with equal contributions to the integral as

(f)o Vo, = const by simply choosing K; chj[ J(x)] from each section @,
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004 [\ ] 300 4
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00 T = 200
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50 - 504
e . . . l . . : . 0
05 1.0 15 2.0 25 3.0 35 40 45 0.0

X C, (normalized)



example 1

 Two channels 3D functions of multiple peaks

2n|eA uolypuny




example 1

20 regions with similar contribution to value of integral

. After first training . After sixth training
e Uncertain e Uncertain
10 - X Misclassified 10 - X Misclassified
5 1 5 1
< 01 x 0
—5 1 —5 4
—10 A —10 A
_15 I 1 1 I I _15 1 1 I I 1
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
X1 X1

After sixth training step: above 99% accuracy (100000 test points).



example 2

 Two channels 3D functions of f(x,y) = fi(x,y) + f>»(x,y)

fno-parking(x) = % [fring(x) + fline(x)]
(X1 —11)° ] exp [_ (%3 — pp)? ]

2
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example 3

e 00 — 0o = finite : We are testing "fine-tuning" function of

fi(z1,z2) = g(x1;5,2)g(x2;0,2)

. _ 1 (z —m)?
fa(z1,2) = g(x1; —5,2.1)g(z2;0,2.1) with g(z;m,o) = gy S

f3(x17$2) = g(x1; 0, 3)g(m2; 0, 3)
f(z1,2) = 1000 [f1(x1,22) — fo(x1,22)] + f3(x1,20) Jf(x)dxdy ~ ]

Divisions for equal "absolute" contributions
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example 3

After first training After second training —_
15 — 15 ®
OO Yooy e Uncertain w1757
. . +
10 10 - X Misclassified '% 15.0 -
[oX
3
7
(©
< 10.0 A
of L0 2
E 7.5 4
o
-5 -5 4 ()
2 5.0
. =
—-10 4« Uncertain —101 .ﬁ § 2.5 1
X Misclassified &
—-15 + I T —-15 + T T T T T 0.0_
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 (1, 10%) (2, 104 (2, 107)
X1 X1

(Trainings, # test points)

* The rate of misclassification is stable against increasing number of
testing sample.



The Physics



2 — 2 process with interference

q - g 1—2
M+M



Generating MC samples with NN

ROOT: TGenPhaseSpace

—>»| trained NN ——>

I

Prediction of region label

/ Optional:

Selection of importance regions

reduce points
in low impor-

l

MadGraph: matrix2py

l

acceptance/rejection

l

Unweighted events

tance regions



Very simple NN structure

| Hidden layers |
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Approximate index of region
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high-dimensional
phase space

e~ et invariant mass projection

Projection into
collider observable x
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» Sample each region until
enough events are

accumulated.
NN can tell which

regions points belong to.

P Select points using correct
result.

v



Sample as long as we want

Number of events
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e \We can zoom into "rare events"



Conventional
Zoom

Our ZOOM

|M|2A |M|2A

4 | A

e Current zoom in MC (Madgraph)
Is focusing on phase space or
some observable.

* We focus on the region of low
statistics itself :

- This region can be mapped

- This cut gives effects on . .
Into various observable spaces.

other observables.




| put the difficulties into
my deep pockets

e \We just started a journey into my dream, building up Monte Carlo
Generator.

e The true difficulties are in |M|2 itself. The HUGE number of
diagrams.

- | am collaborating with a string theorist, Kanghoon Lee (APCTP).
He has a magic to simplify the calculation of amplitude.

e Still | need to have an advanced computing method for |M|2
and more efficient importance sampling.



