

Towards the XAI in HEP

Jin Choi
Dec 1. 2023
For HEP and ML workshop

Introduction

Explosive development of AI in HEP

- ✓ Neural Networks as parametrized fitting functions modeling parton distributions and showers
- Jet tagging to identify boosted, heavy quarks
- Implementing pre-trained DNN models on FPGA devices online reconstruction / triggering
- End to end simulations using generative models
- ✓ And more...

[boosted jet tagging]

Particle Identification

[nnpdf 4.0]

✓ Neural Networks as parametrized fitting functions - modeling parton distributions and showers

Jet But how much we ✓ Imp ring End understand ✓ Anc about these models? Low boost 0.90 [boosted jet tagging] 10-1 10-3 10-2

Particle Identification

[nnpdf 4.0]

- Correlation vs. Causality [A Survey]
- ✓ The definition of the XAI is still controversial, but mostly concerns:
- ✓ Transparency: the model should be able to create a human-understandable justification
- ✓ Trustability: judgement should be based on the knowledge and available explanations
- **⊘** Bias understanding and Fairness: XAI helps mitigate biases either from inputs or architectures

[Attributing pixels using RISE method]

[Bias testing using permutation importance]

- Correlation vs. Causality [A Survey]
- The definition of the XAI is still controversial, but mostly concerns:
- ✓ Transparency: the model should be able to create a human-understandable justification
- Trustability: judgement should be based on the knowledge and available explanations
- **ு Bias understanding** and **Fairness**: XAI helps mitigate biases either from inputs or architectures
- Categorization of the XAI
- ✓ Local or Global: Where is the XAI method focusing on?
- Methodology: What is the algorithmic approach? Input data instances? Model gradients?
- **✓ Usage**: How is the XAI method developed? Is it intrinsic? Is it model-dependent?
- In this talk, I will cover the XAI methods and applications for
- Simple models with tabular datasets Decision Tree and DNN based explanation
- Complex models with graph datasets Graph neural networks and its explanation, surrogated models

Example

- **Classifying TT hadronic vs. QCD multijets**
- ✓ Number of jets / bjets expected to have good discrimination power
- ✓ Used features:
 - 4 momentum
 - DeepJet scores for light vs. b / q vs. g
 - EM / Hadron / Muon Energy fractions
 - Jet multiplicity, HT, average ΔR between jets

Up to 4th leading pt jets

Decision Trees

First explainable model

- Decision trees are intrinsically explainable split of the nodes are based on "impurity"
- ✓ Importance of each feature can be mapped by "decrease of impurity after split"

Example) Gini Index

Gini =
$$1 - (0.8^2 + 0.2^2) = 0.32$$
 Gini = $1 - (0.2^2 + 0.8^2) = 0.32$
Gini_s = $0.5 \times 0.32 + 0.5 \times 0.32 = 0.32$

0.18 decreased by this split!

Can be mapped to feature importance

$$Gini(T) = 1 - \sum_{j} p_j^2 \text{ with } j \in C$$

$$Gini_s(T) = \frac{N_1}{N}Gini(T_1) + \frac{N_2}{N}Gini(T_2)$$

Decision Trees

Permutation Importance

Shuffle one of the features from the dataset and observe the decrease in output metric

Height at age 20 (cm)	Height at age 10 (cm)	•••	Socks owned at age 10
182			20
175	147		10
	(A		
156	142		8
153	130		24

Large decrease on important features!

- ✓ Model agnostic feature importances are measured based on the dataset
- Correlation between features naturally considered by shuffling
- **Controlling overfitting using feature importances**
- ✓ Overfitting problem occurs because of learning bias in the train set
- Result in different feature importances in the train and the validation(or test) set

Decision Trees

Controlling overfitting based on permutation importances

Training

- ✓ Used the same inputs as in the BDT case
- Used Adam optimizer, learning for 30 epochs

Results

- √ ~ 90% accuracy for both train / valid set
- No specific behaviors to judge overfitting

Training

- ✓ Used the same inputs as in the BDT case
- ✓ Used Adam optimizer, learning for 30 epochs

Black Box?

score

How can we make explanatory metrics from the DNN?

Results

- √ ~ 90% accuracy for both train / valid set
- No specific behaviors to judge overfitting

input ---

Attributions

- ✓ Various efforts were made to explain the relationship between input features and outputs
- ✓ DNNs are differentiable! Calculation of attributions rely on instantaneous / finite gradients of the models
- e.g.) DeConvNet, Guided back-propagation, DeepLift, LRP, Integrated Gradients...

Axiomatic approach

- Attributions should satisfy Sensitivity and Implementation Invariance
- Here we focus on **integrated gradients** which satisfy the two axioms:

$$IG_{i}(x) \equiv (x_{i} - x_{i}') \times \int_{\alpha=0}^{1} \frac{\partial F(x' + \alpha(x - x'))}{\partial x_{i}} d\alpha$$

- Extracting Feature Importances from DNN models
- Calculation of the integrated gradients can be easily done using [captum]

a bit counterintuitive...
the model consider more in QvsG score than light vs b score

(13.6 TeV)

- **Extracting Feature Importances from DNN models**
- Calculation of the integrated gradients can be easily done using [captum]

a bit counterintuitive...
the model consider more in QvsG score than light vs b score

CMS Private Work

0.6

Most of the attributions for j1_btagDeepFlavB assigned to low values

Conductance

✓ Not only mapping importance from the features to the outputs, also contribution for each nodes are also possible via chain rules

Conductance of neuron y: Cond_i^y(x)
$$\equiv (x_i - x_i') \times \int_{\alpha=0}^{1} \frac{\partial F(x' + \alpha(x - x'))}{\partial y} \frac{\partial y}{\partial x_i} d\alpha$$

✓ Total conductance of neuron y: Cond^y(x) $\equiv \sum_{i} (x_i - x_i') \times \int_{\alpha=0}^{1} \frac{\partial F(x' + \alpha(x - x'))}{\partial y} \frac{\partial y}{\partial x_i} d\alpha$

Top 15 activated neurons

Bottom 15 activated neurons

✓ Most of the neurons are not activated if the model capacity is too large

Optimizing Model Capacity using Conductance

 \checkmark We can see most of the neurons are not activated if the model capacity is too large

Data Representation

- What is the most natural representation for HEP events?
- ✓ Ordered lists(tables) / Binary Trees
 - → Manually imposed ordering might impair the performance
 - → The length of the list is **fixed** but the no. of particles in each event is **flexible**

Data Representation

What is the most natural representation for HEP events?

- ✓ Ordered lists(tables) / Binary Trees
 - → Manually imposed ordering might impair the performance
 - \rightarrow The length of the list is fixed but the no. of particles in each event is flexible
- Images: map each pixel of an image with pre-defined intensity
 - → Incorporating additional information is not straight-forward
 - \rightarrow Sparse representation. $O(1) \sim O(10)$ particles for each event, O(1000) pixels for each image

light q jet

Data Representation

What is the most natural representation for HEP events?

- ✓ Ordered lists(tables) / Binary Trees
 - → Manually imposed ordering might impair the performance
 - → The length of the list is fixed but the no. of particles in each event is flexible
- ✓ Images: map each pixel of an image with pre-defined intensity
 - → Incorporating additional information is not straight-forward
 - \rightarrow Sparse representation. $O(1) \sim O(10)$ particles for each event, O(1000) pixels for each image

⋖ Graphs / Particle Clouds(Graphs without edges)

- → An **unordered**, **permutation invariant** set of particles
- \rightarrow No need to fix the variable size / No intrinsic ordering
- \rightarrow Still embedding relationship between 3 nodes are not straight-forward

Example

Classifying BSM Higgs signal and TT+Z

- \checkmark 5 Higgs in 2HDM model light H⁺ can be branching from top
- \checkmark In this study, fix the mass of H⁺ and A to be 130 / 90 GeV
- \checkmark Final state consists of $e\mu^+\mu^-$ + multi-(b)jets
- \checkmark TT + Z is one of the major backgrounds

Remarks in this example

 \checkmark M $(\mu^+\mu^-)$ will be the final discrimination variable

Example

Classifying BSM Higgs signal and TT+Z

- In this study, fix the mass of H⁺ and ப 5 Higgs in 2HDM model - light H^+
- Final state consists of $e\mu^+\mu^-$ + mul
- TT + Z is one of the major backgr

Remarks in this example

M $(\mu^+\mu^-)$ will be the final discrimi

Example

Classifying BSM Higgs signal and TT+Z

- \checkmark 5 Higgs in 2HDM model light H⁺ can be branching from top
- \checkmark In this study, fix the mass of H⁺ and A to be 130 / 90 GeV
- \checkmark Final state consists of $e\mu^+\mu^-$ + multi-(b)jets
- \checkmark TT + Z is one of the major backgrounds

Remarks in this example

- \swarrow M $(\mu^+\mu^-)$ will be the final discrimination variable
- For further discrimination, Graph Neural Networks will be studied
- ✓ Not only the discrimination power, we want the model considering features other than di-muon mass t

Complex ModelsData Representation

- Input features for graph classification
- Each event is represented as fully connected undirected graph
- Node features: 4 momentum of the particle, charge, type of the particle, b-tagging score for jets
- √ 105K events for the signal and the background, total 210K events, 6:3:1 split for train:valid:test

Can you distinguish signal and background events?

Complex ModelsGraph Neural Networks

Basic Structure

Complex ModelsGraph Neural Networks

Default Model

- \checkmark Conv Layers: TransformerConv(64) \rightarrow DynamicEdgeConv(64) \rightarrow DynamicEdgeConv(64)
- Readout: Mean Aggregation for each node features
- \checkmark Dense Layers: batchnorm \rightarrow (alpha_dropout(0.4) \rightarrow dense(64) \rightarrow SeLU activation)x2 \rightarrow sigmoid
- In this example, I will test the **dropout rate** of the **connection of the edges**

Complex ModelsConvolution Layers

National Explainability

 \checkmark Conv Layers: **TransformerConv(64)** \rightarrow DynamicEdgeConv(64) \rightarrow DynamicEdgeConv(64)

Attention masks already impose the relation between particles!

Complex Models Convolution Layers

> Intrinsic Explainability

 \checkmark Conv Layers: **TransformerConv(64)** \rightarrow DynamicEdgeConv(64) \rightarrow DynamicEdgeConv(64)

- Attention masks already impose the relation between particles!
- ✓ Convolution layers supports dropout_p which randomly disconnect the edges while training → want to find optimum value of this hyperparameter

Hyperparmeter Optimization

✓ Change the dropout_p values and check the distributions of the mask attention of two muons

Tested [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]

Experimental Settings

- optimizer: Adam
- learning rate: 0.002
- scheduling: Cyclic LR
- 30 epochs for each model

Results

- ~80% accuracy for all models

Too large dropout rate
Hard to capture the relations
between other particles

0.2~0.3 would be the optimal value! reduced one dimension for hyperparameter optimization

Visualization

Masks for two muons are isolated from the other particles' graph

Surrogated Models

Models without intrinsic explanation

- Edge masks are first order gradients Can we map from inputs to outputs directly?
- Integrated Gradients for edges \rightarrow path integral from 0 edge weights to 1 $IG_i(w) \sim \int_{\alpha=0}^1 \frac{\partial F(x' + \alpha(w w'))}{\partial w_i} d\alpha$
- ✓ Modified ParticleNet does not support edge weights (attention is self-trainable)

Surrogated Models

- We usually do not train the models with intrinsic explanation
- \checkmark Train another model with intrinsic explanation \rightarrow Surrogated Models!
- ✓ Use the same trainset, re-label the class labels as the model's outputs

Complex ModelsSurrogated Models

SraphNet

 \checkmark Conv Layers: **GraphConv(64)** \rightarrow DynamicEdgeConv(64) \rightarrow DynamicEdgeConv(64)

$$\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \sum_{j \in \mathcal{N}(i)} e_{j,i} \cdot \mathbf{x}_j$$
 Integration Variable

✓ No edge_dropout applied

$\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} lpha_{i,j} \mathbf{W}_2 \mathbf{x}_j,$

c.f.) TransformerConv

Training the surrogated model

- ✓ Used the same trainset, re-labelling the class labels with original model's output
- \checkmark Trained two surrogated models for edge_dropout_p = 0.05 & 0.2
- ✓ Both surrogated models showed ~90% accuracy in re-labelled trainset

Complex ModelsSurrogated Models

Results

Conclusion

Explainability of AI models

- Achieving explanatory of AI models are task-dep., sample-dep. and model-dep.
 - → **No general rule** for achieving explainability!
- Large AI models are perfect for capturing the correlation between input features, but lack of causality make it hard to interpret
- XAI is a collection of methodologies to make human-readible causally connected description of AI models
- Modern attribution methods make possible for mapping from input to model output for deep learning models, based on local/global gradients
- Even if your model is not intrinsically explainable, it is possible to train surrogated models to achieve explainability