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What is XAI? Why we need it?
Introduction
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Explosive development of AI in HEP

[nnpdf 4.0]

Neural Networks as parametrized fitting functions - modeling parton distributions and showers

Jet tagging to identify boosted, heavy quarks

Implementing pre-trained DNN models on FPGA devices - online reconstruction / triggering

[boosted jet tagging]

End to end simulations using generative models

And more...

Particle Identification

https://arxiv.org/pdf/2109.02653.pdf
https://cms.cern/news/performance-jet-flavour-algorithms-ml-calibrate-ml-data
https://arxiv.org/pdf/2008.03601.pdf
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Explosive development of AI in HEP

[nnpdf 4.0]

Neural Networks as parametrized fitting functions - modeling parton distributions and showers

Jet tagging to identify boosted, heavy quarks

Implementing pre-trained DNN models on FPGA devices - online reconstruction / triggering

[boosted jet tagging]

End to end simulations using generative models

And more...

Particle Identification

But how much we 
understand 

about these models?

https://arxiv.org/pdf/2109.02653.pdf
https://cms.cern/news/performance-jet-flavour-algorithms-ml-calibrate-ml-data
https://arxiv.org/pdf/2008.03601.pdf
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The definition of the XAI is still controversial, but mostly concerns:

Trustability: judgement should be based on the knowledge and available explanations

Transparency: the model should be able to create a human-understandable justification

Bias understanding and Fairness: XAI helps mitigate biases either from inputs or architectures

Correlation vs. Causality [A Survey]

[Attributing pixels using RISE method] [Bias testing using permutation importance]

https://arxiv.org/pdf/2006.11371.pdf
https://arxiv.org/abs/1806.07421
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html


What is XAI? Why we need it?
Introduction

6

The definition of the XAI is still controversial, but mostly concerns:

Trustability: judgement should be based on the knowledge and available explanations

Transparency: the model should be able to create a human-understandable justification

Bias understanding and Fairness: XAI helps mitigate biases either from inputs or architectures

Categorization of the XAI

Local or Global: Where is the XAI method focusing on?

Methodology: What is the algorithmic approach? Input data instances? Model gradients?

Usage: How is the XAI method developed? Is it intrinsic? Is it model-dependent?

Correlation vs. Causality [A Survey]

In this talk, I will cover the XAI methods and applications for

Simple models with tabular datasets - Decision Tree and DNN based explanation

Complex models with graph datasets -   
Graph neural networks and its explanation, surrogated models

https://arxiv.org/pdf/2006.11371.pdf


Simple Models



Example
Simple Models

Classifying TT hadronic vs. QCD multijets

VS

Number of jets / bjets expected to have good discrimination power

Used features: 
- 4 momentum  
- DeepJet scores for light vs. b / q vs. g 
- EM / Hadron / Muon Energy fractions 
- Jet multiplicity, HT, average  between jets ΔR

Up to 4th leading pt jets

300K evts for each TT / QCD, 6:1:3 for train:valid:test split
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Decision Trees
Simple Models

First explainable model

Decision trees are intrinsically explainable - split of the nodes are based on "impurity"

Importance of each feature can be mapped by "decrease of impurity after split"

 with  Gini(T) = 1 − ∑
j

p2
j j ∈ C

Ginis(T) =
N1

N
Gini(T1) +

N2

N
Gini(T2)

Gini = 1 − (0.52 + 0.52) = 0.5

Gini = 1 − (0.82 + 0.22) = 0.32 Gini = 1 − (0.22 + 0.82) = 0.32

Ginis = 0.5 × 0.32 + 0.5 × 0.32 = 0.32

0.18 decreased by this split!

Example) Gini Index

Can be mapped to feature importance

Top 15 important features  
based on Gini index 

(Overfitted)

train acc = 100% 
valid acc = 89%
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Decision Trees
Simple Models

Permutation Importance

Shuffle one of the features from the dataset and observe the decrease in output metric

10

Large decrease on important features!

Controlling overfitting using feature importances

Overfitting problem occurs because of learning bias in the train set

Model agnostic - feature importances are measured based on the dataset

Correlation between features naturally considered by shuffling

Result in different feature importances in the train and the validation(or test) set



Decision Trees
Simple Models

Controlling overfitting based on permutation importances
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Large decrease on important features!
train acc = 100% 
valid acc = 89%

ordering of the feature importances changed!

train acc = 87.5% 
valid acc = 87.3%

overfitted

restriction: max_depth=7



Deep Neural Networks
Simple Models

Training
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Used the same inputs as in the BDT case

batchnorm 
dropout(0.4) 
dense(64) 

relu

batchnorm 
dropout(0.4) 

dense(2) 
sigmoid

input score

batchnorm 
dropout(0.4) 
dense(64) 

relu

Used Adam optimizer,  
learning for 30 epochs

Results

~ 90% accuracy for both train / valid set

No specific behaviors to judge overfitting
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Used the same inputs as in the BDT case

batchnorm 
dropout(0.4) 
dense(64) 

relu

batchnorm 
dropout(0.4) 

dense(2) 
softmax

input score

batchnorm 
dropout(0.4) 
dense(64) 

relu

Used Adam optimizer,  
learning for 30 epochs

Results

~ 90% accuracy for both train / valid set

No specific behaviors to judge overfitting

Black Box?

How can we make explanatory metrics from the DNN?



Deep Neural Networks
Simple Models

Attributions
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Various efforts were made to explain the relationship between input features and outputs

e.g.) DeConvNet, Guided back-propagation, DeepLift, LRP, Integrated Gradients...

DNNs are differentiable! Calculation of attributions rely on  
instantaneous / finite gradients of the models

Here we focus on integrated gradients which satisfy the two axioms: 

IGi(x) ≡ (xi − x′￼i) × ∫
1

α=0

∂F(x′￼+ α(x − x′￼))
∂xi

dα

path integral of gradients 

following the straight line  

from the baseline x' to input x

Axiomatic approach

Attributions should satisfy - Sensitivity and Implementation Invariance



Deep Neural Networks
Simple Models

Extracting Feature Importances from DNN models

15

Calculation of the integrated gradients can be easily done using [captum]

a bit counterintuitive...

the model consider more in QvsG score than light vs b score

https://captum.ai/
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Simple Models

Extracting Feature Importances from DNN models
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Calculation of the integrated gradients can be easily done using [captum]

a bit counterintuitive...

the model consider more in QvsG score than light vs b score

Most of the attributions for j1_btagDeepFlavB assigned to low values

https://captum.ai/


Deep Neural Networks
Simple Models

Conductance
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Not only mapping importance from the features to the outputs, also contribution for each nodes 
are also possible via chain rules

Conductance of neuron :  y Condy
i (x) ≡ (xi − x′￼i) × ∫

1

α=0

∂F(x′￼+ α(x − x′￼))
∂y

∂y
∂xi

dα

Total conductance of neuron :  y Condy(x) ≡ ∑
i

(xi − x′￼i) × ∫
1

α=0

∂F(x′￼+ α(x − x′￼))
∂y

∂y
∂xi

dα

Top 15 activated neurons Bottom 15 activated neurons



Deep Neural Networks
Simple Models

Optimizing Model Capacity using Conductance
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Most of the neurons are not activated if the model capacity is too large

Almost all units are not even activated  
up to 0.1% of the most activated unit!

Let's reduce the capacity from (512, 512) to (128, 96)

Acc/train

Acc/valid

Overfitting behavior reduced

input - hidden(512) - hidden(512) - output



Deep Neural Networks
Simple Models

Optimizing Model Capacity using Conductance
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We can see most of the neurons are not activated if the model capacity is too large

Most of the neurons are activated!

input - hidden(128) - hidden(96) - output

Almost all units are not even activated  
up to 0.1% of the most activated unit!

input - hidden(512) - hidden(512) - output



Complex Models



Data Representation
Complex Models

What is the most natural representation for HEP events?

21

Ordered lists(tables) / Binary Trees 
 Manually imposed ordering might impair the performance 
 The length of the list is fixed but the no. of particles in each event is flexible

→
→
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Ordered lists(tables) / Binary Trees 
 Manually imposed ordering might impair the performance 
 The length of the list is fixed but the no. of particles in each event is flexible

→
→

Images: map each pixel of an image with pre-defined intensity 
 Incorporating additional information is not straight-forward 
 Sparse representation.  particles for each event,  pixels for each image

→
→ O(1) ∼ O(10) O(1000)

g jets light q jet
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Ordered lists(tables) / Binary Trees 
 Manually imposed ordering might impair the performance 
 The length of the list is fixed but the no. of particles in each event is flexible

→
→

Images: map each pixel of an image with pre-defined intensity 
 Incorporating additional information is not straight-forward 
 Sparse representation.  particles for each event,  pixels for each image

→
→ O(1) ∼ O(10) O(1000)

Graphs / Particle Clouds(Graphs without edges) 
 An unordered, permutation invariant set of particles 
 No need to fix the variable size / No intrinsic ordering 
 Still embedding relationship between 3 nodes are not straight-forward

→
→
→



Example
Complex Models

Classifying BSM Higgs signal and TT+Z
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VS

5 Higgs in 2HDM model - light  can be branching from topH+

In this study, fix the mass of  and  to be 130 / 90 GeVH+ A

Final state consists of  + multi-(b)jetseμ+μ−

Remarks in this example

 will be the final discrimination variableM (μ+μ−)

 is one of the major backgroundsTT + Z
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Example
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Classifying BSM Higgs signal and TT+Z
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VS

5 Higgs in 2HDM model - light  can be branching from topH+

In this study, fix the mass of  and  to be 130 / 90 GeVH+ A

Final state consists of  + multi-(b)jetseμ+μ−

Remarks in this example

 will be the final discrimination variableM (μ+μ−)

 is one of the major backgroundsTT + Z

For further discrimination, Graph Neural Networks will be studied

Not only the discrimination power, 
we want the model considering features other than di-muon mass



Data Representation
Complex Models

Input features for graph classification
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Each event is represented as fully connected undirected graph

Node features: 4 momentum of the particle, charge, type of the particle, b-tagging score for jets

Can you distinguish signal and background events?

105K events for the signal and the background, total 210K events, 6:3:1 split for train:valid:test



Graph Neural Networks
Complex Models
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Basic Structure

Conv. 
Layers

R
E
A
D
O
U
T

Dense 
Layers

input graph output 
for graph classification

output 
for node classification

Event 
Features



Graph Neural Networks
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Default Model

Conv. 
Layers

R
E
A
D
O
U
T

Dense 
Layers

input graph output 
for graph classification

Conv Layers: TransformerConv(64)  DynamicEdgeConv(64)  DynamicEdgeConv(64)→ →
Readout: Mean Aggregation for each node features

Dense Layers: batchnorm  (alpha_dropout(0.4)  dense(64)  SeLU activation)x2  sigmoid→ → → →
In this example, I will test the dropout rate of the connection of the edges



Convolution Layers
Complex Models
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Intrinsic Explainability

Conv Layers: TransformerConv(64)  DynamicEdgeConv(64)  DynamicEdgeConv(64)→ →

Attention masks already impose the relation between particles!

a model trys to capture  
the relation between 

two muons

another model trys to capture  
the relation between 

other particles



Convolution Layers
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Intrinsic Explainability

Conv Layers: TransformerConv(64)  DynamicEdgeConv(64)  DynamicEdgeConv(64)→ →

Attention masks already impose the relation between particles!

Convolution layers supports dropout_p which randomly disconnect the edges 
while training  want to find optimum value of this hyperparameter→



Hyperparmeter Optimization
Complex Models
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Graduate Descent Method via XAI

Change the dropout_p values and check the distributions of the mask attention of two muons

Tested [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4] Experimental Settings 
- optimizer: Adam 
- learning rate: 0.002 
- scheduling: Cyclic LR 
- 30 epochs for each 
model 
 
Results 
- ~80% accuracy for all 
modelswithout edge_dropout, 

model primarily considers the relations 
between two muons

optimal points

Too large dropout rate 
Hard to capture the relations 

between other particles

0.2~0.3 would be the optimal value! 
reduced one dimension for hyperparameter optimization



Visualization
Complex Models
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dropout_p = 0.25

dropout_p = 0.05

Masks for two muons are isolated from the other particles' graph



Surrogated Models
Complex Models
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Models without intrinsic explanation

Edge masks are first order gradients - Can we map from inputs to outputs directly?

Integrated Gradients for edges  path integral from 0 edge weights to 1  →

IGi(w) ∼ ∫
1

α=0

∂F(x′￼+ α(w − w′￼))
∂wi

dα

Surrogated Models

We usually do not train the models with intrinsic explanation

Train another model with intrinsic explanation  Surrogated Models!→

Use the same trainset, re-label the class labels as the model's outputs

Modified ParticleNet does not support edge weights (attention is self-trainable)



Surrogated Models
Complex Models
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GraphNet

Conv Layers: GraphConv(64)  DynamicEdgeConv(64)  DynamicEdgeConv(64)→ →

No edge_dropout applied

Integration Variable

c.f.) TransformerConv

Training the surrogated model

Used the same trainset, re-labelling the class labels with original model's output

Trained two surrogated models for edge_dropout_p = 0.05 & 0.2

Both surrogated models showed ~90% accuracy in re-labelled trainset

0.9



Surrogated Models
Complex Models
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Results

dropout_p = 0.05

dropout_p = 0.2



Conclusion

37

Explainability of AI models

Achieving explanatory of AI models are task-dep., sample-dep. and model-dep. 
 No general rule for achieving explainability!→

Large AI models are perfect for capturing the correlation between input features, 
but lack of causality make it hard to interpret

Modern attribution methods make possible for mapping from input to model output 
for deep learning models, based on local/global gradients

Even if your model is not intrinsically explainable, it is possible to train surrogated models 
to achieve explainability

XAI is a collection of methodologies to make human-readible causally connected description 
of AI models


