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“All happy families are alike; 

each unhappy family is unhappy in its own way.”

Leo Tolstoy, Anna Karenina

3



“All normal data are alike; 

each anomalous data is anomalous in its own way.”
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All Normal Data are Alike
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Each Anomalous Data is Anomalous in its Own Way
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Anomaly Detection

Training:
A dataset of “normal” or inlier samples is 
given.

Testing:
Given a unlabeled “normal” and 
“abnormal” samples, predict which ones 
are “abnormal.”

Inliers
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Supervised Approach for Anomaly Detection?

• The detector may miss outliers of unseen types

Inliers

Training Outliers

Supervised 
Detector
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Terminology

I will use the following terms interchangeably:
• Anomaly (↔Normal)

• Outlier (↔Inlier)

• Novelty

• Out-of-distribution (OOD) sample (↔In-distribution sample)

Related problems:
• Anomaly detection with contaminated training data

• OOD detection (additionally assumes inlier class, e.g., dogs, cats,…)
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Autoencoder-Based Anomaly Detection in Particle Physics

(2018)
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Autoencoders

𝑥 ෤𝑥 = 𝑓𝑑(𝑓𝑒(𝑥))𝑧

𝑓𝑒(𝑥) 𝑓𝑑(𝑧)

Reconstruction Error
𝑙𝜃 𝑥 = 𝑥 − ෤𝑥 2

(Rumelhart et al., 1986)

min
𝜃

𝔼𝑥~𝑝(𝑥) 𝑙𝜃 𝑥

Encoder Decoder

12



Autoencoder-based Outlier Detection

𝑓𝑒(𝑥) 𝑓𝑑(𝑧)
Small 
𝑙𝜃(𝑥)

“Inlier”

𝑓𝑒(𝑥) 𝑓𝑑(𝑧)
Large 
𝑙𝜃(𝑥)

“Outlier”

(Japkowicz et al., 1995)

An autoencoder is not able to reconstruct outliers.

Assumption
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Outlier Reconstruction

Input

Recon

An autoencoder does reconstruct outliers

MNIST
(Training)

Fashion-MNISTOmniglot Blank

Interactive Web Demo: https://swyoon.github.io/outlier-reconstruction/
or google “outlier reconstruction web demo”
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Reconstruction Error – Ideal Case

𝑙 𝑥

𝑥

Recon.
Error

InputOutlier
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Reconstruction Error In Reality

𝑙 𝑥

𝑥

Recon.
Error

InputOutlier
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Autoencoder’s Blind Spot

==

𝑙 𝑥

𝑥

𝑙 𝑥

𝑥

min
𝜃

𝔼𝑥~𝑝(𝑥) 𝑙𝜃 𝑥

Autoencoder’s loss function does not differentiate the two cases
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Maximum Likelihood Learning

𝑥
InputOutlier

𝑝 𝑥 min
𝜃

𝔼𝑥~𝑝(𝑥) − log 𝑝𝜃 𝑥 න𝑝𝜃 𝑥 𝑑𝑥 = 1
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How Can We Bring 
Normalization Constraint to Autoencoders?

Energy-based Models or Boltzmann Distributions

𝑝𝜃 𝑥 =
1

Ω𝜃
𝑒−𝐸𝜃(𝑥), Ω𝜃 = න𝑒−𝐸𝜃(𝑥)𝑑𝑥

𝐸𝜃 𝑥 ↓ ⇒ 𝑝𝜃 𝑥 ↑

Energy 𝐸𝜃 𝑥  defines a probabilistic model 𝑝𝜃 𝑥

Normalization 
Constant
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Normalized Autoencoders (NAE)

𝐸𝜃 𝑥 = 𝑙𝜃 𝑥 = 𝑥 − ෤𝑥 2

𝑝𝜃 𝑥 =
1

Ω𝜃
𝑒−𝑙𝜃(𝑥), Ω𝜃 = න𝑒−𝑙𝜃(𝑥)𝑑𝑥

We set energy 𝐸𝜃 𝑥  as reconstruction error 𝑙𝜃(𝑥)

min
𝜃

𝔼𝑥~𝑝(𝑥) 𝑙𝜃 𝑥 + logΩ𝜃

Minimizing
Reconstruction Error

Enforcing
Normalization

Maximum Likelihood 
for NAE
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Training of NAE

𝔼𝑥~𝑝(𝑥) ∇𝜃 log 𝑝𝜃 𝑥 = −𝔼𝑥~𝑝 𝑥 ∇𝜃𝑙𝜃 𝑥 + 𝔼𝑥′~𝑝𝜃 𝑥′ ∇𝜃𝑙𝜃 𝑥′

Gradient of Likelihood

Decreasing Real Data
Reconstruction Error

Increasing Generated Sample
Reconstruction Error

Suppression of Outlier Reconstruction
An outlier 𝑥∗ has a small 𝑙𝜃 𝑥∗

→ 𝑝𝜃 𝑥∗ is large
→ 𝑥∗ is sampled from 𝑝𝜃(𝑥) 
→𝑙𝜃(𝑥

∗) is increased by ∇𝜃𝑙𝜃(𝑥
∗)→ Outlier Reconstruction Suppressed!
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Sampling from NAE 𝐱′~𝑝𝜃 𝐱′

𝔼𝐱′~𝑝𝜃 𝐱′ ∇𝜃𝑙𝜃 𝐱′ Increasing Generated Sample
Reconstruction Error

Langevin Monte Carlo (LMC) Sampling

𝐱0~Noise distribution

𝐱𝑡+1 = 𝐱𝑡 −
𝜆1

2
∇𝐱𝐸𝜃 𝐱𝑡 + 𝜖𝑡,   𝜖𝑡~𝒩(0, 𝜆2)

• 𝐱𝑇 : a sample from 𝑝𝜃 𝐱

• 𝐸𝜃 𝐱 = 𝑙𝜃 𝐱

• 𝜆1, 𝜆2: Hyperparameters. Step size and noise strength.

𝑡 = 0,⋯ , 𝑇
Input Space

𝐱0
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On-Manifold Initialization (OMI)

Algorithm Sampling with OMI

Initialize 𝐳0 randomly
Sample 𝐳𝑇 = LangvinMonteCarlo 𝐳0 // Latent Chain

Decode 𝐱0 = 𝑓𝑑(𝐳𝑇) // On-Manifold Initialization

Sample 𝐱𝑇′ = LangevinMonteCarlo(𝐱0) // Visible Chain

Latent Space

Input Space

𝑓𝑑 𝐳𝑇

𝐳0

Initialize 𝐱0 on the decoder manifold

𝐱0

Decoder manifold ℳ = 𝑥|𝑥 = 𝑓𝑑 𝑧 , 𝑧 ∈ 𝒵
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Suppressed Outlier Reconstruction

Input

AE
Recon

MNIST
(Training)

Fashion-MNIST Omniglot Blank

NAE
Recon
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AUROC

NAE .934

AE .537

DAE .537

VAE(R) .721

VAE(L) .614

WAE .799

GLOW .426

PixelCNN++ .497

IGEBM .522

VSMNIST 0 - 8 (in) MNIST 9 (out) CIFAR-10 (in) SVHN (out)

AUROC

NAE .920

AE .175

DAE .175

VAE(R) .191

VAE(L) .185

WAE .168

GLOW .260

PixelCNN++ .074

IGEBM .371

VS
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MNIST Hold-out Class Detection Experiment
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Dataset-vs-Dataset Experiment

Inlier: CIFAR-10 Inlier: ImageNet 32x32
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Sample Generation 𝐱′~𝑝𝜃 𝐱′

MNIST (28x28) CelebA (64x64)
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Outlier Reconstruction
A fundamental glitch in autoencoder-based outlier detection

Normalized Autoencoders
A novel autoencoder based on energy-based formulation
where outlier reconstruction is naturally suppressed

Summary
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• NAE was adopted by particle physicists 
to detect anomalous signals in Large 
Hardron Collider.

• NAE outperformed all other AE-based 
methods in particle physics simulation 
datasets.

(at Institute for Theoretical Physics, Heidelberg University, 2023 March)
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NAE for LHC Trigger (Dillon et al., 2022)
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Challenges 1: Inaccurate Langevin Monte Carlo

• Too many hyperparameters
• # of steps, step size, noise size, initialization,…

• Anomaly detection performance is highly sensitive to these 
hyperparameters

• For high-dimensional (>100) data, with a short (<100) MCMC, 
sampling 𝑥′~𝑝𝜃 𝑥′  will never be exact

𝔼𝑥~𝑝(𝑥) ∇𝜃 log 𝑝𝜃 𝑥 = −𝔼𝑥~𝑝 𝑥 ∇𝜃𝐸𝜃 𝑥 + 𝔼𝑥′~𝑝𝜃 𝑥′ ∇𝜃𝐸𝜃 𝑥′

Decreasing Real Data
Energy

Increasing Generated Sample
Energy
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Challenges 2: Burden of Reconstruction

• For high-dimensional complex signals, 
reconstruction is unnecessarily difficult 
requirement.

• Very difficult to achieve small 𝑙 𝑥  for 
in-distribution data.
• The reconstruction assumption is violated 

conversely – too high for inliers.
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Energy-Based Models for Anomaly Detection:
A Manifold Diffusion Recovery Approach

Frank Chongwoo Park
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Sangwoong Yoon
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The Roles of Autoencoder in NAE

1. Energy function  𝐸 𝐱 = 𝐱 − ෤𝐱 2

2. Negative sample generation
•On-Manifold Initialization

37

A single autoencoder serving two roles may limit
scalability and flexibility



Learning Through 
Recovery from Perturbation

• Denoising autoencoder (Vincent et al., 2008)

• Masked autoencoder (He et al., 2021)

• BERT (Devlin et al., 2018)

• Autoregressive models
• PixelCNN (van den Oord et al., 2016)

• Language models (incl. ChatGPT)

(https://pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/)

https://thegradient.pub/understanding-evaluation-metrics-for-language-models/
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(Figure from Bengio et al., 2013)

Recovery Likelihood

• Perturb data 𝐱 with a Gaussian noise: 𝐱 → ෤𝐱
෤𝐱 = 𝐱 + 𝜎𝜖, 𝜖 ∼ 𝒩 0, 𝐈

• Recovery likelihood 𝑝𝜃(𝐱|෤𝐱)
• The probability of data 𝐱 given its perturbed version ෤𝐱

𝑝𝜃 𝐱 ෤𝐱 ∝ 𝑝 ෤𝐱|𝐱 𝑝𝜃 𝐱

(Bengio et al., 2013; Gao et al., 2021)

Model 𝑝𝜃 𝐱  can be trained 
by maximizing log 𝑝𝜃(𝐱|෤𝐱)

(Bayes’ rule)

39



Manifold Projection-Diffusion (MPD)
A novel perturbation operation using autoencoder 𝑓𝑒 , 𝑓𝑑

1. Projection: 𝐱
𝑓𝑒
𝐳

2. Diffusion: 𝐳
+𝜎𝜖

෤𝐳

Recovery Likelihood  ≡ 𝑝 𝐱|෤𝐳

Training algorithm maximizing log 𝑝 𝐱|෤𝐳 is
Manifold Projection-Diffusion Recovery (MPDR)

𝒳

𝒵

𝐱

ℳ

𝐳

𝒇𝒆

෤𝐳
+𝝈𝝐

෤𝐱

𝒇𝒅

MPDR is a consistent estimation algorithm for 𝑝 𝐱 40



Gaussian vs Manifold Projection-Diffusion

MPD introduces lower-frequency perturbation
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MPDR Training for EBM

∇𝜃 log 𝑝𝜃 𝐱 = −∇𝜃𝐸𝜃 𝐱 + 𝔼𝐱−~𝑝𝜃 𝐱 ∇𝜃𝐸𝜃 𝐱−

∇𝜃 log 𝑝𝜃 𝐱|෤𝐱 = −∇𝜃𝐸𝜃 𝐱 + 𝔼𝐱−~𝑝𝜃 𝐱|෤𝐱 ∇𝜃𝐸𝜃 𝐱−

Maximum Likelihood Training

Maximum Recovery Likelihood Training

∇𝜃 log 𝑝𝜃 𝐱|෤𝒛 = −∇𝜃𝐸𝜃 𝐱 + 𝔼𝐱−~𝑝𝜃 𝐱|෤𝒛 ∇𝜃𝐸𝜃 𝐱−
MPDR Training
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MPDR Negative Sampling Process

Two-Stage Sampling, similarly to NAE 

• Latent space MCMC → Input space MCMC
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Energy Function Design

MPDR-S (Scalar)

• 𝐸𝜃 𝐱 = NN𝜃(𝐱), where NN:𝒳 → ℝ (e.g. ConvNet)

MPDR-R (Reconstruction Error)

• 𝐸𝜃 𝐱 = 𝐱 − 𝐱𝑟𝑒𝑐𝑜𝑛
2, as in NAE

• The autoencoder need not to be the same with autoencoders in MPD

MPDR is compatible with any energy function:
Decoupling of energy  and training algorithm.
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AUROC

MPDR-R .971

NAE .934

AE .537

DAE .537

VAE(R) .721

VAE(L) .614

WAE .799

GLOW .426

IGEBM .522

VSMNIST 0 - 8 (in) MNIST 9 (out) CIFAR-10 (in) SVHN (out)

AUROC

MPDR-R .981

NAE .920

AE .175

DAE .175

VAE(R) .191

VAE(L) .185

WAE .168

GLOW .260

IGEBM .371

VS
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Anomaly Detection on Latent Space

• In-distribution: CIFAR-100
• Representation extracted from pretrained ViT-B_16

AUROC CIFAR-10 SVHN CelebA

Supervised MD .8634 .9638 .8833

RMD .9159 .9685 .4971

Unsup. AE .8580 .9645 .8103

NAE .8041 .9082 .8181

IGEBM .8217 .9584 .9004

MPDR-S .8338 .9911 .9183

MPDR-R .8626 .9932 .8662 (Dosovitskiy et al., 2021)46



Take-Home Messages

1. Autoencoders are prone to reconstruct outliers.

2. EBM with autoencoder-based energy is promising 
for anomaly detection.

3. Challenges are remaining:
1. EBM training needs to be improved.
2. Learning good representation is still important.
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Thank you!

Sangwoong Yoon swyoon@kias.re.kr

AI Research Fellow @ KIAS

Open for research collaboration
• Generative modeling (Energy-Based Models, Diffusion Models)

and its connection to Reinforcement Learning
• Out-of-Distribution detection
• Application of machine learning on natural science and engineering
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