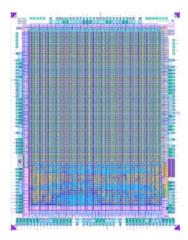
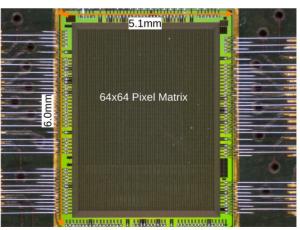


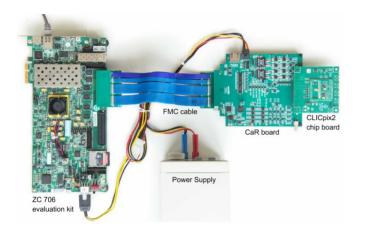
43rd RD50 Workshop

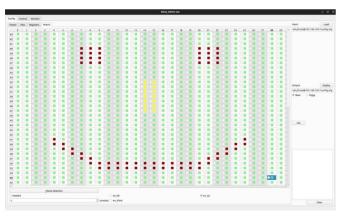
Beam test characterization of RD50-MPW3


Bernhard Pilsl on behalf of the HV-CMOS working group

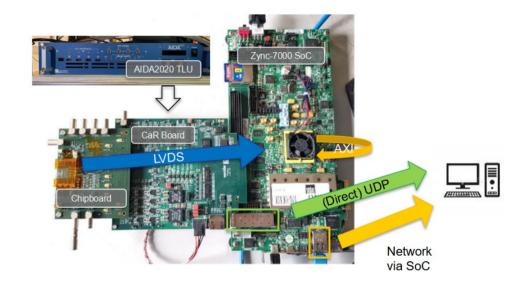


- 64 x 64 Pixel with pitch of 62µm
 - Arranged in 32 double columns
- Full analog and digital electronics inside pixel
- LFoundry 150nm HVCMOS process
- Large collection electrode design
- Fast clock at 320MHz
- 8 bit 50ns timestamps for ToT
- Digital periphery
 - I2C server for configuration
 - 8 bit per pixel
 - Data FIFO depth of 32 words for each double column



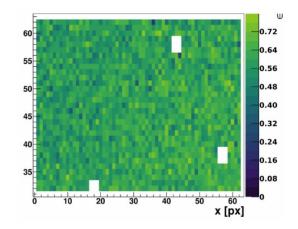


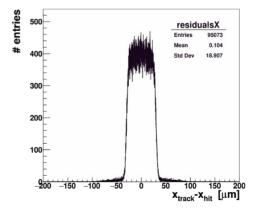
Base DAQ

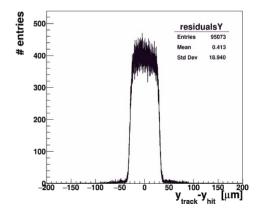

- Caribou system
- Implemented Peary Device
 - Custom I2C interface (16 bit addresses)
- GUI for configuration
 - Generating Peary config files

Testbeam DAQ

- Fully integrated into EUDAQ2
- CaribouProducer too slow for full read-out rate
 - Only used for run-control commands
- Custom UDP (1 Gbit/s) Data-Collector implemented
 - Multi–threaded approach
 - More like a EUDAQ-producer, but directly storing to disk
- EUDAQ-monitor integrated in GUI
- EUDAQ-Producer for submission of run info to ELog server
- Analysis done with Corryvreckan





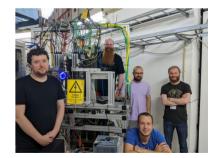


Reminder: Testbeam at *CERN SPS*

- Beam test at CERN SPS facility in Oct. 2022
- Severe issues with synchronization
- Only low statistic runs taken due to bugs in measurement setup
- Total efficiency of ~60% evaluated
- ~Binary spatial resolution measured ~18.9μm

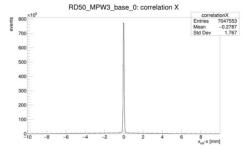
DAQ improvements

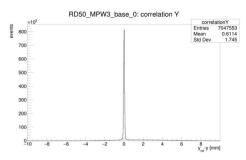
- Problem at CERN: synchronization
 - 1 global timestamp for ~1300 hits
 - Data preprocessor looking for overflows in TS-LE to refine hit-timestamps
- FW adjustments allow for global timestamp for ~each hit

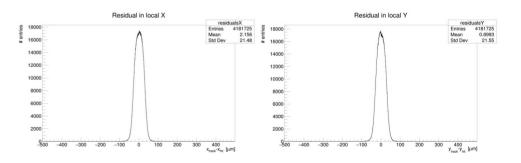


Testbeam Setup *DESY*

- Utilizing Adenium telescope
 - Based on Alpide chip
 - Pitch: 29μm x 26μm
 - 1024 x 512 pixel matrix
 - 6 planes
- Setup triggered by 2 scintillators operated in coincidence
- Telescope synchronized via trigger-numbers
- DUT (MPW3) synchronized via time-stamps
- Matching done by AIDA2020-TLU
- Electron beam with (mostly) 4.2 GeV, 6kHz used

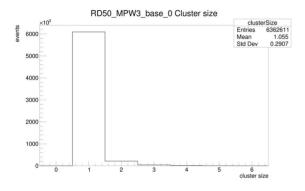


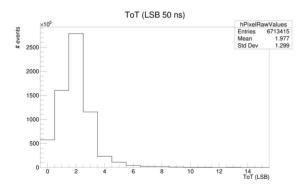




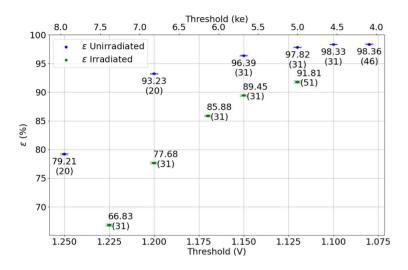
General Results DESY

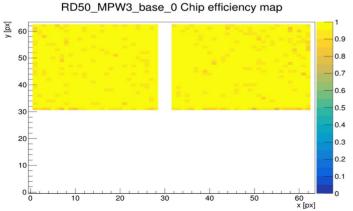
- Correlations with very little background observed
 - Properly synchronized
- Std. dev. of residuals show spatial resolution of ~21.5µm
 - Slightly worse than binary resolution of $\frac{62 \, \mu m}{\sqrt{12}} \approx 18 \, \mu m$
 - Reason pitch of telescope and alignment
 - Simulations (Allpix²) show resolution of telescope at DUT position of TODO



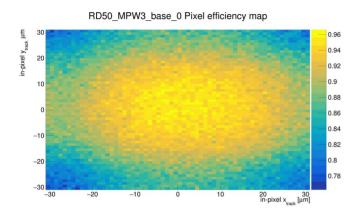


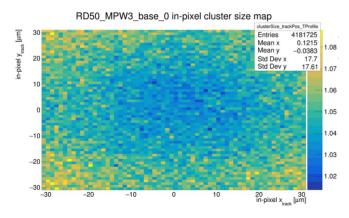
General Results DESY (2nd)




- ToT values of ~1.98 LSBs (on 50ns base) measured
- Mean cluster size ~1.06 pixel / cluster
 - Center of gravity approach to increase spatial resolution not possible

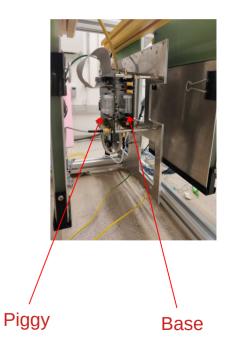
Chip - Efficiency DESY




- Best total efficiency of ~98% encountered at threshold of ~4.09ke⁻
- Take efficiency values with a grain of salt
 - Numbers in brackets indicate numbers of rows masked during data taking (noise issue)
- Efficiency values in green correspond to irradiated $(10^{14} \, 1\text{MeV} \, n_{eq})$ sample
 - Efficiency decreases after irradiation
 - Noise also increases

In-Pixel Efficiency DESY

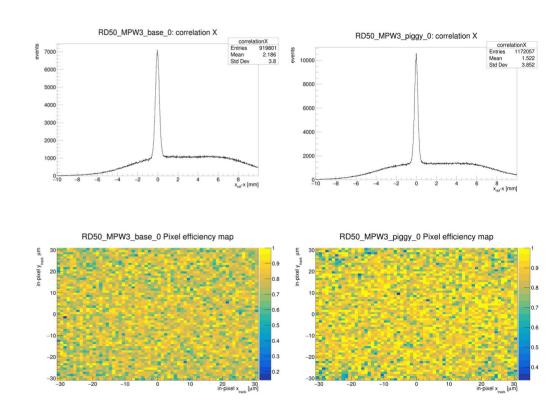
- In-pixel efficiency (shown for 1.15V thr.) shows worse efficiency in corners
- Cluster size map shows increased cluster-size in the corners
 - Tracks intersecting pixel corners cause bigger clusters → Charge sharing
- Charge sharing with neighboring pixels attenuated by high threshold



- MedAustron is a medical facility located close to Vienna
- Telescope with 4 DSSD planes
 - 512 x 512 "quasi" pixel
 - Pitch: 100μm x 50μm
- Triggered with 2 scintillators operated in coincidence
- 800 MeV proton beam with ~10kHz rate
 - No MIPs
- Worse tracks compared to DESY
- 2 DUTs
 - Base board 1.9kΩcm non-irradiated
 - Piggy board 3kΩcm non-irradiated
 - 32 bottom rows masked
 - Threshold 1.25V ~ 7900e⁻¹
 - Biased to -90V

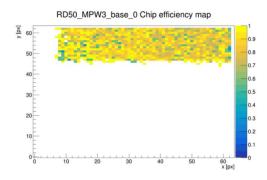
MedAustron

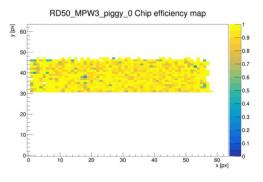
The Piggy Board


- Allows to operate to RD50-MPW3s with only one Caribou system
- High speed signals connected via ethernet cable
- Supply voltages connected via standard ribbon cable
- Was also installed at DESY, but DAQ not able to synchronize data
- Planned usage:
 - Easier to install / exchange in a telescope than base board (needs to be plugged into the CaRboard)

MedAustron Results

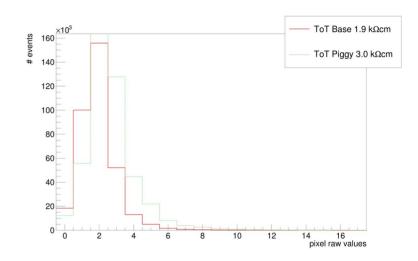
- DUTs operated at 1.25V ~ 7900e⁻ threshold and -90V bias
- 32 bottom rows masked
- Managed to properly synchronize Piggy board
- Correlations show increased background compared to DESY results
 - Synchronization parameters of the DSSDtelescope not known as well
- Total-efficiency Base 74.21(+0.18, -0.18)%
- Total-efficiency Piggy 86.33(+0.16, -0.16)%
- Efficiency at this threshold at DESY: ~79.2%





MedAustron: Extending the telescope

- Sacrificing one DUT in Corryvreckan analysis to act as extra telescope plane
 - Require 5 telescope-hits for each track
 - Allows to counter systematic (synchronization) errors in the analysis (same DAQ used for both DUTs)
 - Tracks get better resolution
- Efficiency base 81.73(+0.38, -0.39)%
 - In better agreement with DESY
- Efficiency piggy 92.26(+0.28, -0.29)%
- Misalignment of base and piggy → Only small area of chip taken into account


Discrepancies

- Base and Piggy:
 - Only significant difference: resistivity of substrate
 - Differences also seen in ToT values

1.9kΩcm: 1.94 LSB

• 3kΩcm: 2.68 LSB

- Different threshold behavior?
- Greater depletion depth for $3k\Omega cm$?
- Work in progress
- MedAustron vs. DESY
 - Efficiency at MedAustron ~2% higher at same threshold
 - Lower beam energy at MedAustron → More energy deposited in detector

MPW3:

- Work on Allpix² simulations started
 - Aiming to reproduce *DESY*-TB results to improve understanding of chip
- Annealing studies with irradiated samples

• MPW4:

- Should be delivered by LFoundry in the next few weeks
- Noise issue should (hopefully) be resolved
- Lab work: I-V measurements, proper calibration with injections
- 2 Beam test campaigns already scheduled in 2024
 - End of Mar. at MedAustron
 - End of Apr. at DESY


BACKUP

Noise Issue

- Shared power lines between pixel matrix and digital periphery
 - High noise occurence in bottom rows correlated to digital activity
- Analog simulations as reported in last RD50 workshop reproduced the measured behaviour
- Changes in design of upcoming RD50-MPW4 should (hopefully) fix this behavior

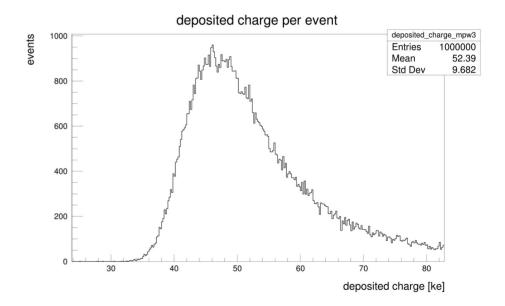
Common Power and GND

20 mV

top pixel

Seperated Power and GND

20 mV


top pixel

Efficiency too high?

- According to (Allpix²) simulations on average 50ke⁻ deposited in 300µm silicon with DESY beam
- Assuming depletion depth of 100μm
- (Back of the envelope) collection yields ~ 16ketransferred to implants
- With threshold of ~5 ke⁻ efficiency of 98% plausible

