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Outline AV

* Introduction and ALPHAg

* Results of antihydrogen free fall experiment
* “ECR” magnetometry technique

* Example magnetic field measurements

* Summary of magnetic bias uncertainty
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Antimatter and fundamental symmetries &

Since a system should be invariant under CPT transformation
compare and look for differences
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Where is all the antimatter? NTA

There should be equal amounts of matter and antimatter...

...but we only see matter in the observable universe, why?

@ compare and look for differences
ALI .
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Why do we use antihydrogen?

@ clectron

proton ) N antiproton

positron @

Image credit: PWoosaree

Hydrogen Antihydrogen

* Hydrogen has been studied extensively through
history, comparing to antihydrogen can test
fundamental symmetries

.g * Electrically neutral and stable
ALY 5
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Antimatter and fundamental symmetries &
s s

-> We can use free fall as a test of the equivalence principle
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ALPHAg simplified ugm
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And put it in an easier orientation ®

DOWN
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Assuming gravity acts the same on matter @
and antimatter
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¢ = upB — mgh

Ap = —mgAh

=AB~5 X 1074T

Down <- Vertical Position -> Up
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Magnetic trap bias ENEERRY
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Annihilation distributions per bias ENEERRY
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Observation of the effect of gravity on the motion of antimatter
AL“ Nature volume 621, pages716—722 (2023) .
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ALPHAg escape curve CATEARY
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“Adam, do you control
and know the magnetic
fields better than 5
Gauss?”



Assuming gravity acts the same on matter @
and antimatter

CALGARY
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Using cyclotron frequency for
CALGARY
magnetometry

fc for electronsat 1 T ~ 28 GHz

But...the cyclotron motion isn’t all
that happens in a Penning trap

Axial frequency ~ 10 - 50 MHz

Magnetron frequency ~ 100 - 300 kHz

+ Cyclotron

Image credit: T.Friesen
AL
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What is Electron cyclotron resonance )

magnetometry?
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Get an electron plasma
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Remove a smal
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scoop” of electrons ENEERRY

Position




And another
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Move to target location
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Irradiate with a microwave pulse
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Position




Measure temperature of electron )
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Position

Electron Cyclotron Resonance (ECR) Magnetometry with a Plasma Reservoir
E. D. Hunter, A. Christensen, J. Fajans, T. Friesen, E. Kur, and J. S. Wurtele (2019)




An example of ECR spectra ENEERRY

* Narrow central
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Field mapping the background magnet ENEERRY
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Field mapping the magnetic trap ENEERRY
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Mapping out the on axis maxima of each ®
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solenoid CALCARY
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Mapping out the on axis maxima of each 9
solenoid

CALGARY
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Measure decaying induced fields ENEERRY
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Error from different decaying fields ENEERRY
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ALPHAg escape curve
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Summary CALGARY

* We have made the first observation of antihydrogen
motion under the effect of Earth’s gravity

* We have extensively studied magnetic fields in ALPHAg
using ECR

* We have assigned uncertainty to the bias based on
these magnetic field measurements

:

s
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Backup slides
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Assuming gravity acts the same on matter @ _
and antimatter

CALGARY
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How do you understand the magnetic
environment?
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* What is the background field?

* How does the field respond to applied current for
each magnet?

* Where is the maxima of each magnet?

* Are there any uncontrolled fields?

Key point: We are always interested in the differences bottom/top

40
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Significant improvements to ECR capabilities

CALGARY

* Measure in multiple locations simultaneously

* Resolution better than 10™* T (even in high field
gradients of a few 10™* T/mm)

* Stable plasmas for repeatable measurements over
months

* On axis field mapping with resolution < 1Imm

* Available range: 0.5-1.78 T (14 — 50 GHz)

Low frequency end not tested

41



©

Non-neutral plasma requirements ERCERRY

EoT

* Debye length, Ap =

nge?
.AD < L
* ngl; > 1
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Calibrating magnetic field to current )
applied
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Simultaneous calibration of top and bottom
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Fast repeat ECR example ENEERRY
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Measure decaying induced fields ENEERRY
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Final well
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Magnetic field (T)

Field strength on axis (T)
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Systematic effects studied with ECR CALARY

* Induced currents from changing fields

* Long term stability

* Changing trap length during a ramp down
* Differences in magnet construction

* Errors in magnet winding positions
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Magnetic field uncertainties ENEERRY
ECR spectrum width 0.07
Repeatability of (B; — By) 0.014
Peak field size and z fit 0.009
Field decay asymmetry 0.02
Bias variation in time 0.02

Field modelling 0.05
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Contributions to g uncertainty
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How to define up and down? ENEERRY

10100 A

Looso 1| DOWN [ Excluded \ up
10060 A (\

10040 -

B (Gauss)

10020 A

) U

-300 -200 —100 0 100 200 300
z (mm)

53




Towards 1%
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Control of coils NTA

PSU
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