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• Introduction and ALPHAg

• Results of antihydrogen free fall experiment

• “ECR” magnetometry technique

• Example magnetic field measurements

• Summary of magnetic bias uncertainty 



Antimatter and fundamental symmetries 
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Matter Antimatter

Since a system should be invariant under CPT transformation 
compare and look for differences



Where is all the antimatter?
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There should be equal amounts of matter and antimatter…

…but we only see matter in the observable universe, why?
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compare and look for differences



Why do we use antihydrogen?
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• Hydrogen has been studied extensively through 
history, comparing to antihydrogen can test 
fundamental symmetries

• Electrically neutral and stable 

Image credit: P.Woosaree
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Dr. Alberto Jesus Uribe Jimenez talk next!



Antimatter and fundamental symmetries 
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-> We can use free fall as a test of the equivalence principle

Earth Anti-earth Earth



8

m



9



ALPHAg simplified
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Image credit: Dr C.So, ALPHA member
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And put it in an easier orientation
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DOWN UP



Assuming gravity acts the same on matter 
and antimatter
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𝜙 = 𝜇𝐵𝐵 − 𝑚𝑔ℎ

∆𝜙 = −𝑚𝑔∆ℎ

≡ ∆𝐵 ~ 5 × 10−4 T
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Magnetic trap bias

14

𝐵𝑖𝑎𝑠 =
𝜇𝐵 𝐵𝐺 − 𝐵𝐴
𝑚𝐻 𝑧𝐺 − 𝑧𝐴
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Annihilation distributions per bias

𝐵𝑖𝑎𝑠 =
𝜇𝐵 𝐵𝐺 − 𝐵𝐴
𝑚𝐻 𝑧𝐺 − 𝑧𝐴

Observation of the effect of gravity on the motion of antimatter
Nature volume 621, pages716–722 (2023)



ALPHAg escape curve
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ҧ𝑔 = [0.75 ± 0.13 (𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 + 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐) ± 0.16 (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)] 𝑔

Observation of the effect of gravity on the motion of antimatter
Nature volume 621, pages716–722 (2023)

Dr. Danielle Hodgkinson talk



“Adam, do you control 
and know the magnetic 
fields better than 5 
Gauss?”



Assuming gravity acts the same on matter 
and antimatter
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𝜙 = 𝜇𝐵𝐵 − 𝑚𝑔ℎ

∆𝜙 = −𝑚𝑔∆ℎ

≡ ∆𝐵 ~ 5 × 10−4 T

Field change from 
1.7 T to 1 T in 20 s



Using cyclotron frequency for 
magnetometry
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𝑓𝑐 =
𝑞 𝐵

2 𝜋 𝑚
𝑓𝑐 for electrons at 1 T ~ 28 GHz 

Axial frequency ~ 10 - 50 MHz 

Magnetron frequency ~ 100 - 300 kHz 

But…the cyclotron motion isn’t all 
that happens in a Penning trap

Image credit: T.Friesen



What is Electron cyclotron resonance 
magnetometry?
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Get an electron plasma
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e-



Remove a small “scoop” of electrons
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e-



And another
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Move to target location
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Irradiate with a microwave pulse
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Measure temperature of electron 
“scoops”
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e-

Electron Cyclotron Resonance (ECR) Magnetometry with a Plasma Reservoir 
E. D. Hunter, A. Christensen,  J. Fajans , T. Friesen, E. Kur, and J. S. Wurtele (2019)



An example of ECR spectra
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• Narrow central 
peak = 𝑓𝑐

• Precision related to 
peak width 

• Broad, asymmetric  
sidebands from 
electrons axial 
frequency



Field mapping the background magnet 
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10−4 T = 1 Gauss = 2.8 MHz

2828



Field mapping the magnetic trap 
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Mapping out the on axis maxima of each 
solenoid
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10−4 T = 1 Gauss = 2.8 MHz



Mapping out the on axis maxima of each 
solenoid
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10−4 T = 1 Gauss = 2.8 MHz



Measure decaying induced fields
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10−4 T = 1 Gauss = 2.8 MHz



Error from different decaying fields
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ALPHAg escape curve
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ҧ𝑔 = [0.75 ± 0.13 (𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 + 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐) ± 0.16 (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)] 𝑔

Uncertainty Magnitude 
(g)

ECR spectrum width 0.07

Repeatability of (𝐵𝐺 −
𝐵𝐴)

0.014

Peak field size and z fit 0.009

Field decay asymmetry 0.02

Bias variation in time 0.02

Field modelling 0.05

ECR data constrained



Summary
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• We have made the first observation of antihydrogen 
motion under the effect of Earth’s gravity

• We have extensively studied magnetic fields in ALPHAg 
using ECR

• We have assigned uncertainty to the bias based on 
these magnetic field measurements



Thank you for listening!
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Backup slides
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Assuming gravity acts the same on matter 
and antimatter

𝜙 = 𝜇𝐵𝐵 − 𝑚𝑔ℎ

∆𝜙 = −𝑚𝑔∆ℎ

≡ ∆𝐵 ~ 5 × 10−4 T ≡ 1 g





• What is the background field?

• How does the field respond to applied current for 
each magnet?

• Where is the maxima of each magnet?

• Are there any uncontrolled fields?

How do you understand the magnetic 
environment?
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Key point: We are always interested in the differences bottom/top



• Measure in multiple locations simultaneously

• Resolution better than 10−4 T (even in high field 
gradients of a few 10−4 T/mm)

• Stable plasmas for repeatable measurements over 
months 

• On axis field mapping with resolution < 1mm

• Available range:  0.5 – 1.78 T (14 – 50 GHz)
• Low frequency end not tested

Significant improvements to ECR capabilities
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• Debye length, 𝜆𝐷 =
𝜀0𝑇

𝑛0𝑒
2

• 𝜆𝐷 ≪ 𝐿

• 𝑛0𝜆𝐷
3 ≫ 1

Non-neutral plasma requirements
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Calibrating magnetic field to current 
applied
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10−4 T = 1 Gauss = 2.8 MHz



Fast repeat ECR example
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Measure decaying induced fields
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10−4 T = 1 Gauss = 2.8 MHz



Final well
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Aimed for 50 Gauss
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Systematic effects studied with ECR
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• Induced currents from changing fields

• Long term stability

• Changing trap length during a ramp down

• Differences in magnet construction

• Errors in magnet winding positions



Magnetic field uncertainties
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Uncertainty Magnitude (g)

ECR spectrum width 0.07

Repeatability of (𝐵𝐺 − 𝐵𝐴) 0.014

Peak field size and z fit 0.009

Field decay asymmetry 0.02

Bias variation in time 0.02

Field modelling 0.05



Contributions to g uncertainty
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Uncertainty Magnitude (g)

Statistical and 
systematic 

Finite data size 0.06

Calibration of detector 
efficiencies (up vs down)

0.12

Other minor sources 0.01

Simulation model Modelling of magnetic fields 0.16

Antihydrogen initial energy 
distribution

0.03



How to define up and down?
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Towards 1%
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Control of coils
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