

Magnetic Fields Studies for Gravitational Experiments with Antihydrogen in ALPHAg

Early Career Conference on Trapped Ions (ECCTI) Innsbruck

12th July 2024 Adam Powell

Outline

- Introduction and ALPHAg
- Results of antihydrogen free fall experiment
- "ECR" magnetometry technique
- Example magnetic field measurements
- Summary of magnetic bias uncertainty

Since a system should be invariant under CPT transformation compare and look for differences

Where is all the antimatter?

There should be equal amounts of matter and antimatter...

...but we only see matter in the observable universe, why?

compare and look for differences

- Hydrogen has been studied extensively through history, comparing to antihydrogen can test fundamental symmetries
- Electrically neutral and stable

6

-> We can use free fall as a test of the equivalence principle

UD

ALPHA-

Experime

Liquid Helium (LHe)

Annihilation Detectors

Electrodes under UHV

Solenoid Magnets

Physical Supports

 \bar{p} (from AD)

Antiproton

n

Catching Trap

Vacuum Pumps and Components

Outer Vacuum Chamber (OVC)

Ultra-High Vacuum (UHV)

CT Stick

Time Projection

Chamber (TPC)

Detector

ALPHAg simplified

ALP

Image credit: Dr C.So, ALPHA member

And put it in an easier orientation

Assuming gravity acts the same on matter and antimatter

 $\phi = \mu_B B - mgh$

 $\Delta \phi = -mg\Delta h$

 $\equiv \Delta B \sim 5 \times 10^{-4} \,\mathrm{T}$

Down <- Vertical Position -> Up

Magnetic trap bias

$$Bias = \frac{\mu_B(B_G - B_A)}{m_H(z_G - z_A)}$$

Annihilation distributions per bias

ALP

Observation of the effect of gravity on the motion of antimatter Nature volume 621, pages716–722 (2023)

ALPHAg escape curve

ALP

 $\bar{g} = [0.75 \pm 0.13 \text{ (statistical + systematic)} \pm 0.16 \text{ (simulation)}] g$

Observation of the effect of gravity on the motion of antimatter Nature volume 621, pages716–722 (2023)

"Adam, do you control and know the magnetic fields better than 5 Gauss?"

Assuming gravity acts the same on matter and antimatter

1.7 T to 1 T in 20 s

Using cyclotron frequency for magnetometry

 f_c for electrons at 1 T ~ 28 GHz

But...the cyclotron motion isn't all that happens in a Penning trap

Axial frequency \sim 10 - 50 MHz

Magnetron frequency \sim 100 - 300 kHz

What is Electron cyclotron resonance magnetometry?

Get an electron plasma

UNIVERSITY OF e-1.5 B (T) 1.0 Position

Remove a small "scoop" of electrons

And another

Move to target location

Irradiate with a microwave pulse

Measure temperature of electron "scoops"

Electron Cyclotron Resonance (ECR) Magnetometry with a Plasma Reservoir E. D. Hunter, A. Christensen, J. Fajans, T. Friesen, E. Kur, and J. S. Wurtele (2019)

An example of ECR spectra

- Narrow central peak = f_c
- Precision related to peak width
- Broad, asymmetric sidebands from electrons axial frequency

Field mapping the background magnet

 10^{-4} T = 1 Gauss = 2.8 MHz

Field mapping the magnetic trap

Mapping out the on axis maxima of each solenoid

Mapping out the on axis maxima of each solenoid

 10^{-4} T = 1 Gauss = 2.8 MHz

Measure decaying induced fields

 10^{-4} T = 1 Gauss = 2.8 MHz

Error from different decaying fields

ALPHAg escape curve

 $\bar{g} = [0.75 \pm 0.13 \text{ (statistical + systematic)} \pm 0.16 \text{ (simulation)}] g$

ALPĤA

ECR data constrained

- We have made the first observation of antihydrogen motion under the effect of Earth's gravity
- We have extensively studied magnetic fields in ALPHAg using ECR
- We have assigned uncertainty to the bias based on these magnetic field measurements

Thank you for listening!

LEVERHULME TRUST _____

Backup slides

Assuming gravity acts the same on matter and antimatter

 $\phi = \mu_B B - mgh$ -10g 10200 +10g 10150 Field (Gauss) 10100 10050 10000 9950 9900 --600-800-400-200 -10000

Position (mm)

 $\Delta \phi = -mg\Delta h$

 $\equiv \Delta B \sim 5 \times 10^{-4} \text{ T} \equiv 1 \text{ g}$

How do you understand the magnetic environment?

- What is the background field?
- How does the field respond to applied current for each magnet?
- Where is the maxima of each magnet?
- Are there any uncontrolled fields?

Key point: We are always interested in the differences bottom/top

Significant improvements to ECR capabilities

- Measure in multiple locations simultaneously
- Resolution better than 10^{-4} T (even in high field gradients of a few 10^{-4} T/mm)
- Stable plasmas for repeatable measurements over months
- On axis field mapping with resolution < 1mm
- Available range: 0.5 1.78 T (14 50 GHz)

Low frequency end not tested

Non-neutral plasma requirements

• Debye length,
$$\lambda_D = \sqrt{rac{\varepsilon_0 T}{n_0 e^2}}$$

- $\lambda_D \ll L$ $n_0 \lambda_D^3 \gg 1$

Calibrating magnetic field to current applied Simultaneous calibration of top and bottom

UNIVERSITY OF

Fast repeat ECR example

E23_0_20sMAGB_ramp

Measure decaying induced fields

Final well

Aimed for 50 Gauss

- Induced currents from changing fields
- Long term stability
- Changing trap length during a ramp down
- Differences in magnet construction
- Errors in magnet winding positions

Magnetic field uncertainties

Uncertainty	Magnitude (g)
ECR spectrum width	0.07
Repeatability of $(B_G - B_A)$	0.014
Peak field size and z fit	0.009
Field decay asymmetry	0.02
Bias variation in time	0.02
Field modelling	0.05

Contributions to g uncertainty

	Uncertainty	Magnitude (g)
Statistical and systematic	Finite data size	0.06
	Calibration of detector efficiencies (up vs down)	0.12
	Other minor sources	0.01
Simulation model	Modelling of magnetic fields	0.16
	Antihydrogen initial energy distribution	0.03

How to define up and down?

Towards 1%

Control of coils

