

Laboratoire Matériaux et Phénomènes Quantiques

Sympathetic cooling of a Be⁺ ion by a Coulomb crystal of Sr⁺ ions: a test bed for taming antimatter ions (GBAR)

Derwell Drapier

Collaboration between LKB and MPQ LKB : Laurent Hilico, Jean-Phillipe Karr and Albane Douillet MPQ : Jean-Pierre Likforman and Luca Guidoni

Context & objective

CERN : 3 experiments are currently studying the antimatter behavior regarding earth gravity:

 $-$ ALPHA-g $\rightarrow \bar{g}/g=0.75\pm0.29$ [1]

- AegIS

- GBAR

Each experiment has a different approach to measure $\bar{g} \rightarrow$ Comparison of different measurements

Antiproton Decelerator (AD) and ELENA (Extra Low ENergy Antiproton) produce \bar{p} at 100keV

> **Create** \overline{H} atoms and cool them to study the effect of gravity

Context

ALPHA

3

Context

GBAR : study the free fall of an antihydrogen atom prepared at rest^[2]. **Need ultra-cold antihydrogen**

Create a \overline{H}^+ ion

Incident \overline{H}^+ with an energy of 1eV (10 000K) in Paul trap **Cooling** to 10µK :

- **1 st step** : sympathetic cooling using ~1000 lasercooled Be⁺ ions to the Be⁺ Doppler limit (mK) - 2nd step : Ground-state cooling of the $\overline{H}^{+}/\overline{Be}^{+}$ pair to sub-Doppler limit

Context

1 st cooling step: 1eV to 100neV

Sympathetic cooling is obtained by the coupling of the hot species and the cold species via **Coulomb interaction** The dynamics depends on the mass ratio between the 2 species but the mhot/mcold<<1 case is **unfavorable mass ratio**

Modeling 1st cooling step:

 \rightarrow **N-body problem:** numerical simulations to long to compute

Experimental simulation to get quantitative information about the cooling process Similar mass ratio $\overline{\mathrm{H}}^{\mathrm{+}}\mathrm{/Be^{\mathrm{+}}}\left(1/9\right)\leftrightarrow\ \mathrm{Be^{\mathrm{+}}}\mathrm{/Sr^{\mathrm{+}}}\left(9/88\right)$ Be⁺ laser addressable (cool and measure)

Objective of the experiment

projectile target

Be⁺ initially cooled at Doppler limit in the **projectile trapping zone Sr⁺** Coulomb crystal load in the **target trapping zone**

Launching of Be⁺ with controlled energy (0.1-1eV)

Measure cooling dynamics of Be⁺ over 7 orders of magnitude $(10 000K \rightarrow 1mK, 1eV \rightarrow 100neV)$

Outline

- I.Experimental setup
- II. Ion launching : approach and simulations
- III. Experimental results
- IV. Outlook

I- Experimental setup

Ions trap: linear surface trap

- Subtract: **alumina** (Al₂O₃)
- Electrodes: **gold plated copper** (Au/Cu)
- RF frequency : **14MHz** (up to 20MHz)
- RF amplitude : **500-1000Vpp**
- **Trapping height : 635µm**
- Spacing of the two trapping zones: **4.96mm**
- **Interelectrode** distance : **200µm**
- RF trapping **depth** : **~50meV** for Sr⁺
- Radial frequencies : ~350kHz
- Stability parameters: $a \sim 0$ & $q_{Sr^+} \sim 0.06$

Useful wavelengths

235nm, 313nm, 405nm, 422nm, 461nm, 1003nm, 1033nm and 1092nm

Energy levels diagram of Be⁺ for

Energy levels diagram of Sr⁺ for Doppler cooling

Laser setup :

313nm power: 8mW

11

Around the trap

In front of the trap: **camera + PM**

Ultra-high vacuum chamber (2.5 10-10mbar)

Trapping stability

Equations of motion of an ion in the trap \rightarrow Mathieu equation Oscillating or divergent solution depending on stability parameters (a and q)

$$
q \propto \frac{V_{RF}}{m\Omega^2} \qquad \qquad q_{Be} = \frac{m_{Sr}}{m_{Be}} q_{Sr}
$$

 q_{Sr} max = 0.561 \rightarrow we need to work at q_{Sr} ~0.057 Ω_{RF} : [14MHz : 20MHz]

II- Ion launching: approach & simulations

Approach for ion launching

Objective : control the launching energy

- Cooling Be⁺ ($E_c \approx 0$ eV) in the projectile trapping zone (U)
- Add voltage V_{push} at the end electrodes (pink electrodes)
- Add V_{close} between the two trapping zone (red electrodes) Δt later when the ion arrives in the target ϕ_{tot} [eV] trapping zone

Calculation of the initial DC voltages

A : end of trap T : center of the target trap C : middle of the trap U: center of the projectile trap B : end of trap

Launching simulation

III- Experimental results

Simulation and experimental results

$V_{push} = 5.7V$, $V_{close} = 1.5V$ and $\Delta t = 35\mu s$

Simulation and experimental results

$V_{push} = 5.7V$, $V_{close} = 1.5V$ and $\Delta t = 35\mu s$

Launching of Sr⁺ ions achieved with a success rate of up to 95%

Characterization of Sr⁺ energy

Objective: Measure Sr⁺ initial energy

Method : Doppler recooling technique^[4]

- Depending on the initial kinetic energy of the ion, the fluorescence will rise more or less late.
- **Knowing the saturation parameter** and the **detuning** of the laser it is possible to **fit the fluorescence** dynamics after launching to **obtain the initial energy** of the ion.

The model considers a constant laser intensity

The laser intensity depends on the position of the ion **→ We need a new model**

[4] Wesenberg *et al*. *Phys. Rev. A*, 76 :053416, 2007.

• Potential simplification : polynomial fit

- Doppler cooling : dissipative force of a Gaussian beam $\vec{F}(\vec{v}, I(\vec{r}))$ $\vec{F}_{dissip} = \hbar \vec{k_L} \frac{\Gamma}{2} \frac{\Omega_R^2/2}{(\delta_L - \vec{k_L} \cdot \vec{v})^2 + \Omega_R^2/2 + \Gamma^2/4}$
- Initial conditions:

$$
\vec{r} = (x_{0,T}, y_{0,T}, z_{0,T})
$$

$$
\vec{v} = (0, 0, \sqrt{2E_c/m})
$$

New model

Cooling time: Homogeneous: 360ms Gaussian beam: 650ms

Work in progress

Outlook

- Finishing the characterization of the launching energy of Sr⁺ ions
- Be+ trapping and cooling
- Trapping both Be⁺ and Sr⁺
- Launching Be⁺ in Sr⁺ Coulomb crystal
- Ground state cooling of the Be⁺/Sr⁺ pair

Thank you for your attention

Ion creation

Two step photoionization

Matrix Method

Potential of a rectangular electrode[3] :

 $\phi(x, y, z) = \frac{V}{\pi} \left\{ \arctan \left[\frac{(x_2 - x)(z_2 - z)}{y_1 \sqrt{y^2 + (x_2 - x)^2 + (z_2 - z)^2}} \right] \right\}$ Position (x,y,z) Rectangle (x_1,x_2,z_1,z_2) $-\arctan\left[\frac{(x_1-x)(z_2-z)}{y_1\sqrt{y_1^2+(x_1-x)^2+(z_2-z)^2}}\right]$ $-\arctan\Big[\frac{(x_2-x)(z_1-z)}{y\sqrt{y^2+(x_2-x)^2+(z_1-z)^2}}\Big]$ $+\arctan\left[\frac{(x_1-x)(z_1-z)}{y_1\sqrt{y_1^2+(x_1-x)^2+(z_1-z)^2}}\right]$. **Taylor development for electrode i :**

$$
\frac{\phi_i(x, y, z)}{V_i} \simeq \alpha_{x,i} x^2 + \alpha_{y,i} y^2 + \alpha_{z,i} z^2 + \gamma xy + \beta_{x,i} x + \beta_{y,i} y + \beta_{z,i} z + cste
$$

Matrix Method

 $\frac{\phi_i(x,y,z)}{V_i} \simeq \alpha_{x,i}x^2 + \alpha_{y,i}y^2 + \alpha_{z,i}z^2 + \gamma xy + \beta_{x,i}x + \beta_{y,i}y + \beta_{z,i}z + cste$ $\phi_{DC}(x, y, z) \simeq \sum \phi_i(x, y, z) = \alpha_x x^2 + \alpha_y y^2 + \alpha_z z^2 + \gamma xy + \beta_x x + \beta_y y + \beta_z z$ $i = elec$ $\begin{pmatrix} \alpha_x \\ \alpha_y \\ \alpha_z \\ \gamma \\ \beta_x \\ \beta_y \\ \beta_z \end{pmatrix} = \begin{pmatrix} \alpha_{x,1} & \alpha_{x,2} & \alpha_{x,3} & \alpha_{x,4} & \alpha_{x,5} & \alpha_{x,6} & \alpha_{x,7} \\ \alpha_{y,1} & \alpha_{y,2} & \alpha_{y,3} & \alpha_{y,4} & \alpha_{y,5} & \alpha_{y,6} & \alpha_{y,7} \\ \alpha_{z,1} & \alpha_{z,2} & \alpha_{z,3} & \alpha_{z,5} & \alpha_{z,5} & \alpha_{z,6} & \alpha_{z,7} \\ \gamma_1 & \gamma$ Pseudo-inverse $C = M \times V$ RF RF ¹ ³ ⁵ 7 $V = M^{-1}C$ 28

Matrix Method in our case

A : end of trap T : center of the target trap C : middle of the trap U : center of the projectile trap B : end of trap

Model limitation

Cooling beam profile with respect to the ion's motion

The laser intensity depends on the position of the ion

We need a new model

Mapping des charges parasite

The minimum of the DC potential must match the minimum of the RF potential, otherwise the ions undergo a forced motion of pulsation Ω_{RF} .

Thanks to the matrix method, we can apply linear fields along the different axes of the trap. This allows us to correct the mismatch.

To correct the position of the ions Radial direction :

- the ions can be brought back to their position when the RF voltage is high.
- Check correlations between photon's arrival time and RF zero (0 correlation = ion on a node).

Longitudinal direction :

• Change potential stiffness along z.

Mapping des charges parasite

To correct the position of the ions

Radial direction :

- the ions can be brought back to their position when the RF voltage is high.
- Check correlations between photon's arrival time and RF zero (0 correlation = ion on a node).

Longitudinal direction :

Congitudinal direction.
• Change potential stiffness along z.
Parasite field in xz plan

Equivalence between axial frequency and barrier height

 $U(z) = az^2 + bz^4$

$$
z = \pm \sqrt{\frac{-a}{2b}}
$$

 $a < 0$
 $b > 0$

The minimums position in fixed, therefore a/b=c is constant

Simulation result

 $V_{push} = 5.7V$, $V_{close} = 1.5V$ and $\Delta t = 35\mu s$

35

Spectrum problem

Objective : extract the saturation parameter at the center of the trap

 dN Spectrum at low laser intensity : dt Width = 27.3 MHz (natural Sr⁺ width : 21.54MHz) Broad spectrum at low intensity + no concordance between height and width

 $=$ $\frac{1}{2} \frac{1}{1+s} \frac{1+\Delta^2/\gamma_{eff}^2}{1+\Delta^2/\gamma_{eff}^2}$ $\gamma_{eff} = \gamma$

Magnetic field compensation : spectrum width = 24MHz at low intensity

Repumping rate :

Increase power density of the repumping beam Check the repumping saturation

