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Experiments at the Antimatter factory
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Charge exchange reaction:

1T 5T

➢Goal: Forming a cold beam of ഥ𝑯 and 
measure its trajectory in a gravitational 
field to <1% accuracy.

➢ Pulsed production of ഥ𝑯 achieved using 
laser excited Rydberg positronium (𝝈 ∝
𝒏𝟒)

➢ Record antiproton catching efficiency.
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The antiprotonic atom

➢Antiproton is a stable negatively 
charged hadron 1836x heavier than 
the electron.

➢ Antiprotonic atoms form deeply 
bound states near the nucleus.

➢Sensitive laboratory for 
benchmarking both QED and QCD.
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The life of an antiprotonic atom

Capture of the 
antiproton in a high-n 
Rydberg state.

Annihilation on nucleus
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Cascade emitting x-rays and 
Auger electrons.

Antiproton approaching 
stripped nucleus, strong 
interaction influences orbitals. 
Resonance effects can take 
place.

Linebroadening caused 
by annihilation with 
nuclear perifery.



What about the resulting nuclear fragments?

➢ Nuclear fragments are (often) 
radioactive Highly Charged Ions (HCI)

➢ Sensitive probes for:
- QED
- Weak interaction
- Nuclear structure

➢ GEANT4/FLUKA simulations of 
fragments formed from 1 million Pbar 
annihilations:

G. Kornakov et al., PRC 107, 034314 (2023) 𝜋

𝜋
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Can we trap fragments in a Penning-Malmberg
trap?

Radial confinement

➢Trapping fractions of nuclear fragments 
determined by charge state (q), E and B-field:

➢Axial confinement by electrode potential 
(~10kV)

➢Radial confinement by B-field (5T)

➢Trapping fraction enhanced by charge state.

127I

>50% trapped at 10 keV/q



Charge-exchange with Rydberg atom

𝐴− + ҧ𝑝
→ ҧ𝑝𝐴∗ + 2𝑒−
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Controlled synthesis of antiprotonic atoms 
using charge-exchange
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Controlled synthesis of antiprotonic atoms

(1)

(2)

(3)

(4)Mixing anions with antiprotons.

Cotrapping of anions and 
antiprotons cooled using electrons.

Nested trap is created.

EA=3.1 eV

Capture of HCI fragments after annihilation.
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ҧ𝑝 From ELENA
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Studying positive ions formed from annihilations with nitrogen in UHV (<1e-8 mbar)

Gas injection
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Towards the synthesis of antiprotonic atoms
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(b)

Overview of the ion capture and TOF procedure



➢Observation of a TOF signal formed from 
antiproton annihilation with nitrogen.

➢Signal observed for low energy 
antiprotons <1 keV. 

TOF spectrum vs 
scintillator signal



Identification of trapped HCIs formed from 
antiproton annihilation

➢TOF spectrum calibrated 
using e-, ҧ𝑝 and H+.

➢HCI trapped with 
m/q=2.0(1) 

➢Expected fragments from 
GEANT4 simulations: (14N7+) 
,12C6+, 10B5+, 6Li3+, 4He2+ ,..

e-

H+

P
_

m/q=1 2 3



Summary and outlook

Antiprotonic atoms 
In AEgIS

Antiprotonic atom 
spectroscopy

Novel synthesis of 
radioactive HCIs

(QED/QCD/BSM)

➢New program at AEgIS focusing on the controlled synthesis and study of antiprotonic 
atoms and HCIs.

➢Procedure developed at AEgIS for trapping and identifying HCIs formed from annihilation 
with antiprotons on atoms in UHV.

➢Simulations ongoing to better understand formation mechanism.

➢Planned study of HCI fragments formed from noble gases (Ar, Kr...).  

Nuclear structure

Anion source installation:
Co-trapping anions 

with antiprotons

Laser installation:
Laser triggered 

synthesis of 
antiprotonic 

atoms

Dark matter?

TOF spectroscopy of 
captured fragments 
from gas injection

Cooling and mixing of 
anions with antiprotons
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Sample data during campaign

MCP TOF signal Scintillator signal (SC21)
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Collissional ionization with antiprotons?

ത𝑃e-

20 eV

10 KeV

3000 eV is required to form N7+ from the N2 molecule



1.035 m 0.545m
MCP

Pbar TOF calibration 

𝑈 𝑡 = 𝐿𝑒𝑓𝑓
2 ∙

𝑚

2𝑒 ⋅ 𝑡2

𝑳𝒆𝒇𝒇 =1.049(5) m



Traditional HCI formation at radioactive beam facilities:

Zschornacka, G., M. Schmidt, and A. Thorn. "Electron beam ion

High energy beam through stripper foil:
Electron beam ionization:



The AEGIS experiment



Low energy antiproton interactions
2kV

Signal of m/q=2 peak vs annihilation event: <1 keV trapped pbars

What could result in the formation of m/q=2 from nitrogen?





Antiproton overlap with nucleus
Iodine NitrogenMercury



Antiprotonic atoms: setup of the ion injection beamline

Goal of the R&D: establish the 

techniques to form antiprotonic 

bound states.

On track for 2023



TOF calibration using Pbars and electrons

Pbar
Electrons

TOF=200(50)ns

TOF=9.5(1)us-70(1)eV → 1.0(2)m

-70(1)eV → 1.10(1)m

1.035m 0.533m
0V



Simulation – Geant4 set up

• Antiproton is created inside 
a hollow sphere of 500 nm 
thickness of target material

• Target defined according to 
data from a config file (N,Z, 
density)
• Simulation ran for different 

isotopes (over 3000 isotopes)

• 1M antiprotons with E=1 keV 

• Physics List:
• FTFP_BERT_HP
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